A Facile Synthesis of Acid-Activatable Nanoparticles for Efficient Intracellular Doxorubicin Release

Article Preview

Abstract:

pH responsive polymeric nanoparticles have emerged as a promising technology platform for targeted and controlled drug delivery in recent years. In this paper, endosomal pH-activatable doxorubicin (DOX) and core-crosslinked polymeric nanoparticles (DCNPs) were prepared and investigated for potent growth inhibition of human cancer cells in vitro. In vitro drug release studies, DOX conjugated nanoparticles with hydrazone bond showed a pH sensitive release phenomenon, that is, the releasing is significantly faster at mildly acidic condition with pH of 5.5 than that at physiological condition. Confocal laser scanning microscope (CLSM) observations revealed that DOX conjugated nanoparticles delivered and released DOX into the cytosols as well as cell nuclei of Hela cells following 6 h incubation. MTT assays demonstrated that these pH-sensitive DOX nanoparticles exhibited high antitumor effect to HeLa cells. The conjugated DOX polymeric nanoparticles may be a promising candidate as a nanoscale and pH-sensitive drug delivery vehicle for cancer therapy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-30

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.K. Ahn, M. Jung, S.J. Sym, D.B. Shin, S.M. Kang, S.Y. Kyung, J.W. Park, S.H. Jeong, E.K. Cho, A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer, Cancer Chemoth. Pharm. 74 (2014).

DOI: 10.1007/s00280-014-2498-5

Google Scholar

[2] Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T. Okusaka, H. Ueno, M. Ikeda, N. Watanabe, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin, Br. J. Cancer 91 (2004).

DOI: 10.1038/sj.bjc.6602204

Google Scholar

[3] X. Yi, Q. Zhang, D. Zhao, J. Xu, Z. Zhong, R. Zhuo, F. Li, Preparation of pH and redox dual-sensitive core crosslinked micelles for overcoming drug resistance of DOX, Polym. Chem. 7 (2016) 1719-1729.

DOI: 10.1039/c5py01783a

Google Scholar

[4] S.H. Kim, J.P. Tan, F. Nederberg, K. Fukushima, J. Colson, C. Yang, A. Nelson, Y.Y. Yang, J.L. Hedrick, Hydrogen bonding-enhanced micelle assemblies for drug delivery, Biomaterials 31 (2010) 8063-8071.

DOI: 10.1016/j.biomaterials.2010.07.018

Google Scholar

[5] E.S. Lee, K.T. Oh, D. Kim, Y.S. Youn, Y.H. Bae, Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine), J. Control. Release 123 (2007) 19-26.

DOI: 10.1016/j.jconrel.2007.08.006

Google Scholar

[6] J.V.M. Weaver, Y.Q. Tang, S.Y. Liu, P.D. Iddon, R. Grigg, N.C. Billingham, S.P. Armes, R. Hunter, S.P. Rannard, Preparation of shell cross-linked micelles by polyelectrolyte complexation, Angew. Che. Int. Edit. 43 (2004) 1389-1392.

DOI: 10.1002/anie.200352428

Google Scholar

[7] W. Fan, Y. Wang, X. Dai, L. Shi, D. McKinley, C. Tan, Reduction-responsive crosslinked micellar nanoassemblies for tumor-targeted drug delivery, Pharm. Res. 32 (2015) 1325-1340.

DOI: 10.1007/s11095-014-1537-6

Google Scholar

[8] Y. Zhong, J. Zhang, R. Cheng, C. Deng, F. Meng, F. Xie, Z. Zhong, Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts, J. Control. Release 205 (2015).

DOI: 10.1016/j.jconrel.2015.01.012

Google Scholar

[9] Y. Shao, W. Huang, C. Shi, S.T. Atkinson, J. Luo, Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment, Ther. deliv. 3 (2012) 1409-1427.

DOI: 10.4155/tde.12.106

Google Scholar

[10] H.S. Han, K.Y. Choi, H. Ko, J. Jeon, G. Saravanakumar, Y.D. Suh, D.S. Lee, J.H. Park, Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy, J. Control. Release 200 (2015) 158-166.

DOI: 10.1016/j.jconrel.2014.12.032

Google Scholar

[11] Q.H. Sun, M. Radosz, Y.Q. Shen, Challenges in design of translational nanocarriers, J. Control. Release 164 (2012) 156-169.

DOI: 10.1016/j.jconrel.2012.05.042

Google Scholar

[12] S. Guragain, B.P. Bastakoti, V. Malgras, K. Nakashima, Y. Yamauchi, Multi-stimuli-responsive polymeric materials, Chem. Eu. J. 21 (2015) 13164-13174.

DOI: 10.1002/chem.201501101

Google Scholar

[13] S. Bhatnagar, V.V.K. Venuganti, Cancer targeting: responsive polymers for stimuli-sensitive drug delivery, J. Nanosci. Nanotechno. 15 (2015) 1925-(1945).

DOI: 10.1166/jnn.2015.10325

Google Scholar

[14] W.W. Gao, J.M. Chan, O.C. Farokhzad, pH-responsive nanoparticles for drug delivery, Mol. Pharmaceut. 7 (2010) 1913-(1920).

DOI: 10.1021/mp100253e

Google Scholar

[15] S. Jiang, Y. Yao, Y.Z. Nie, J.J. Yang, J. Yang, Investigation of pH-responsive properties of polymeric micelles with a core-forming block having pendant cyclic ketal groups, J. Colloid Interf. Sci. 364 (2011) 264-271.

DOI: 10.1016/j.jcis.2011.08.013

Google Scholar

[16] M. Kanamala, W.R. Wilson, M. Yang, B.D. Palmer, Z. Wu, Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review, Biomaterials 85 (2016) 152-167.

DOI: 10.1016/j.biomaterials.2016.01.061

Google Scholar

[17] M. Cao, X. Liu, J. Tang, M. Sui, Y. Shen, Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery, Sci. China Chem. 57 (2014) 633-644.

DOI: 10.1007/s11426-014-5074-2

Google Scholar

[18] D. Willner, P.A. Trail, S.J. Hofstead, H.D. King, S.J. Lasch, G.R. Braslawsky, R.S. Greenfield, T. Kaneko, R.A. Firestone, (6-maleimidocaproyl)hydrazone of doxorubicin-a new derivative for the preparation of immunoconjugates of doxorubicin, Bioconjugete Chem. 4(1993).

DOI: 10.1021/bc00024a015

Google Scholar

[19] K. Dan, S. Ghosh, One-Pot Synthesis of an acid-labile amphiphilic triblock copolymer and its pH-responsive vesicular assembly, Angew. Che. Int. Edit. 52 (2013) 7300-7305.

DOI: 10.1002/anie.201302722

Google Scholar

[20] H. Mizutani, S. Tada-Oikawa, Y. Hiraku, M. Kojima, S. Kawanishi, Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide, Life Sci. 76 (2005) 1439-1453.

DOI: 10.1016/j.lfs.2004.05.040

Google Scholar