Microwave-Assisted Hydrothermal Synthesis of Sm2O3 Nanoparticles and their Optical Properties

Article Preview

Abstract:

Spherical Sm2O3 nanoparticles have been successfully synthesized by microwave-assisted hydrothermal technique in the condition of different microwave radiation power. The microstructure, morphology and optical properties of the samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), field emission transmission electron microscope (FETEM) and ultraviolet-visible (UV-vis) spectrophotometry. The results showed that the precursors Sm (OH)3 nanorods and SmOHCO3 nanoparticles were obtained during microwave-assisted hydrothermal reaction and decomposed into spherical Sm2O3 nanoparticles after heat treatment. A potential mechanism of the formation of Sm2O3 nanoparticles is proposed. The UV-vis absorption spectra indicated that the samples had high ultraviolet absorption capacity and the energy gap was only 4.83 eV as the radiation power increased to 550 W.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-110

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Adachi G-y, Imanaka N. The Binary Rare Earth Oxides. Chemical Reviews. 1998; 98: 1479-514.

DOI: 10.1021/cr940055h

Google Scholar

[2] Yin L, Wang D, Huang J, Tan G, Ren H. Controllable synthesis of Sm2O3 crystallites with the assistance of templates by a hydrothermal–calcination process. Materials Science in Semiconductor Processing. 2015; 30: 9-13.

DOI: 10.1016/j.mssp.2014.09.034

Google Scholar

[3] Gao J, Zhao Y, Yang W, Tian J, Guan F, Ma Y, et al. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Materials Chemistry and Physics. 2003; 77: 65-9.

DOI: 10.1016/s0254-0584(01)00594-6

Google Scholar

[4] Constantinescu C, Ion V, Galca AC, Dinescu M. Morphological, optical and electrical properties of samarium oxide thin films. Thin Solid Films. 2012; 520: 6393-7.

DOI: 10.1016/j.tsf.2012.06.049

Google Scholar

[5] Dakhel AA. Dielectric and optical properties of samarium oxide thin films. Journal of Alloys and Compounds. 2004; 365: 233-9.

DOI: 10.1016/s0925-8388(03)00615-7

Google Scholar

[6] Renganathan B, Sastikumar D, Srinivasan R, Ganesan AR. Nanocrystalline samarium oxide coated fiber optic gas sensor. Materials Science and Engineering: B. 2014; 186: 122-7.

DOI: 10.1016/j.mseb.2014.03.018

Google Scholar

[7] Wu M-H, Cheng C-H, Lai C-S, Pan T-M. Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte–insulator–semiconductor for pH and urea detection. Sensors and Actuators B: Chemical. 2009; 138: 221-7.

DOI: 10.1016/j.snb.2009.01.059

Google Scholar

[8] Liu P, Wang Y, Wang X, Yang C, Yi Y. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors. Journal of Nanoparticle Research. 2012; 14.

DOI: 10.1007/s11051-012-1232-7

Google Scholar

[9] Kang J-G, Min B-K, Sohn Y. Synthesis and characterization of Sm(OH)3 and Sm2O3 nanoroll sticks. Journal of Materials Science. 2014; 50: 1958-64.

DOI: 10.1007/s10853-014-8760-8

Google Scholar

[10] Hussein GAM, Buttrey DJ, DeSanto P, Abd-Elgaber AA, Roshdy H, Myhoub AYZ. Formation and characterization of samarium oxide generated from different precursors. Thermochimica Acta. 2003; 402: 27-36.

DOI: 10.1016/s0040-6031(02)00535-x

Google Scholar

[11] Ruiz-Gómez MA, Gómez-Solís C, Zarazúa-Morín ME, Torres-Martínez LM, Juárez-Ramírez I, Sánchez-Martínez D, et al. Innovative solvo-combustion route for the rapid synthesis of MoO3 and Sm2O3 materials. Ceramics International. 2014; 40: 1893-9.

DOI: 10.1016/j.ceramint.2013.07.095

Google Scholar

[12] Wang X, Jiang H, Liu Y, Gao M. Rapid microwave-assisted hydrothermal synthesis of Sm, N, and P tridoped anatase-TiO2 nanosheets from TiCl4 hydrolysis. Materials Letters. 2015; 147: 72-4.

DOI: 10.1016/j.matlet.2015.02.022

Google Scholar

[13] Chen Z, Li D, Xiao G, He Y, Xu Y-J. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. Journal of Solid State Chemistry. 2012; 186: 247-54.

DOI: 10.1016/j.jssc.2011.12.006

Google Scholar

[14] Krishnakumar T, Jayaprakash R, Parthibavarman M, Phani AR, Singh VN, Mehta BR. Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Materials Letters. 2009; 63: 896-8.

DOI: 10.1016/j.matlet.2009.01.032

Google Scholar

[15] Tipcompor N, Thongtem S, Thongtem T. Transformation of cubic AgBiS2 from nanoparticles to nanostructured flowers by a microwave-refluxing method. Ceramics International. 2013; 39: S383-S7.

DOI: 10.1016/j.ceramint.2012.10.099

Google Scholar

[16] Yang F, Liu Y, Lu Y, Song F, Li B, Zhang X. Microwave-assisted hydrothermal synthesis and photoluminescence property of NaSm(MoO4)2 octahedral crystals. Journal of Materials Science: Materials in Electronics. 2015; 26: 3926-32.

DOI: 10.1007/s10854-015-2922-6

Google Scholar

[17] Ocakoglu K, Mansour Sh A, Yildirimcan S, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F. Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods. Spectrochimica acta Part A, Molecular and biomolecular spectroscopy. 2015; 148: 362-8.

DOI: 10.1016/j.saa.2015.03.106

Google Scholar

[18] Zhao DL, Yang Q, Han ZH, Sun FY, Tang KB, Yu F. Rare earth hydroxycarbonate materials with hierarchical structures: Preparation and characterization, and catalytic activity of derived oxides. Solid State Sci. 2008; 10: 1028-36.

DOI: 10.1016/j.solidstatesciences.2007.11.019

Google Scholar

[19] Nguyen T-D, Mrabet D, Do T-O. Controlled self-assembly of Sm2O3 nanoparticles into nanorods: Simple and large scale synthesis using bulk Sm2O3 powders. Journal of Physical Chemistry C. 2008; 112: 15226-35.

DOI: 10.1021/jp804030m

Google Scholar

[20] Zhu W, Qu F, Chen H, Li Z, Liu B. Synthesis of SmOHCO3 micro/nano particles from the coupling route of homogeneous precipitation with microemulsion. Journal of Rare Earths. 2014; 32: 553-7.

DOI: 10.1016/s1002-0721(14)60107-1

Google Scholar

[21] Chen D, Shen GZ, Tang KB, Liang ZH, Zheng HG. AOT-microemulsions-based formation and evolution of PbWO4 crystals. Journal of Physical Chemistry B. 2004; 108: 11280-4.

DOI: 10.1021/jp0377681

Google Scholar

[22] Sigman MB, Ghezelbash A, Hanrath T, Saunders AE, Lee F, Korgel BA. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. Journal of the American Chemical Society. 2003; 125: 16050-7.

DOI: 10.1021/ja037688a

Google Scholar

[23] Zhao D, Yang Q, Han Z, Sun F, Tang K, Yu F. Rare earth hydroxycarbonate materials with hierarchical structures: Preparation and characterization, and catalytic activity of derived oxides. Solid State Sci. 2008; 10: 1028-36.

DOI: 10.1016/j.solidstatesciences.2007.11.019

Google Scholar

[24] Zhang H, Dai H, Liu Y, Deng J, Zhang L, Ji K. Surfactant-mediated PMMA-templating fabrication and characterization of three-dimensionally ordered macroporous Eu2O3 and Sm2O3 with mesoporous walls. Materials Chemistry and Physics. 2011; 129: 586-93.

DOI: 10.1016/j.matchemphys.2011.04.073

Google Scholar

[25] Xu S, Zhu YS, Xu W, Dong B, Bai X, Xu L, et al. Observation of Ultrabroad Infrared Emission Bands in Er2O3, Pr2O3, Nd2O3, and Sm2O3 Polycrystals. Appl Phys Express. 2012; 5.

DOI: 10.1143/apex.5.102701

Google Scholar

[26] Kang J-G, Min B-K, Sohn Y. Synthesis and characterization of Sm(OH)3 and Sm2O3 nanoroll sticks. Journal of Materials Science. 2015; 50: 1958-64.

DOI: 10.1007/s10853-014-8760-8

Google Scholar

[27] De la Rosa E, Diaz-Torres LA, Salas P, Rodríguez RA. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Optical Materials. 2005; 27: 1320-5.

DOI: 10.1016/j.optmat.2004.11.031

Google Scholar

[28] Hu LM, Dong SY, Li QL, Li YF, Pi YQ, Liu ML, et al. Effects of sodium dodecyl benzene sulfonate on the crystal structures and photocatalytic performance of ZnO powders prepared by hydrothermal method. Journal of Alloys and Compounds. 2015; 649: 400-8.

DOI: 10.1016/j.jallcom.2015.07.109

Google Scholar

[29] Huang JF, Huang Y, Cao LY, Wu JP. Influence of hydrothermal reaction time on phases, morphologies and optical properties of Sm2O3 thin films. Materials Research Innovations. 2007; 11: 173-6.

DOI: 10.1179/143307507x246585

Google Scholar

[30] Yamamoto H, Tanaka S, Hirao K. Effects of substrate temperature on nanostructure and band structure of sputtered Co3O4 thin films. J Appl Phys. 2003; 93: 4158-62.

DOI: 10.1063/1.1555681

Google Scholar

[31] Ocakoglu K, Mansour SA, Yildirimcan S, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F. Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods. Spectroc Acta Pt A-Molec Biomolec Spectr. 2015; 148: 362-8.

DOI: 10.1016/j.saa.2015.03.106

Google Scholar