Influence of Interface Traps on the Electrical Properties of Oxide Thin-Film Transistors with Different Channel Thicknesses

Article Preview

Abstract:

The electrical properties of bottom-gate amorphous InSnZnO (a-ITZO) thin-film transistors (TFTs) with different channel thicknesses (TITZO) were investigated. The difference between front- and back-channel interface traps influence on subthreshold swing (S) and turn on voltage (Von) of a-ITZO TFTs was further analyzed using device simulation. Variations of front-channel interface traps (Naf) on S and Von were hardly dependent on TITZO. However, variations of S and Von became larger for thinner TITZO TFT when back-channel interface traps (Nabk) varied; which can be explained by considering screening length. Not only Naf but also Nabk are important factors of S and Von to achieve high performance thinner oxide TFT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-99

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432 (2004) 488.

Google Scholar

[2] H. -H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C. -C. Wu, Appl. Phys. Lett. 92 (2008) 133503.

Google Scholar

[3] T. -C. Fung, C. -S. Chung, C. Chen, K. Abe, R. Cottle, M. Townsend, H. Kumomi, and J. Kanicki, J. Appl. Phys. 106 (2009) 084511.

Google Scholar

[4] D. Kong, H. -K. Jung, Y. Kim, M. Bae, Y. W. Jeon, S. Kim, D. M. Kim, and D. H. Kim, IEEE Trans. Electron Devices 32 (2011) 1388.

Google Scholar

[5] J. Jeong and Y. Hong, IEEE Trans. Electron Devices 59 (2012) 710.

Google Scholar

[6] E. N. Cho, J. H. Kang, I. Yun, Microelectron. Reliab. 51 (2011) 1792.

Google Scholar

[7] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, Appl. Phys. Lett. 98 (2011) 122105.

Google Scholar

[8] M. Kimura, S. W. –B. Tam, S. Inoue, and T. Shimoda, Jpn. J. Appl. Phys. 43 (2004) 71.

Google Scholar

[9] D. H. Cho, S. H. Yang, J. -H. Shin, C. W. Byun, M. K. Ryu, J. I. Lee, C. S. Hwang, and H. Y. Chu, J. Korean Phys. Soc. 54 (2009) 531.

Google Scholar

[10] K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 99 (2011) 053505.

Google Scholar

[11] M. Li, L. Lan, M. Xu, H. Xu, D. Luo, N. Xiong, and J. Peng, Jpn. J. Appl. Phys. 51 (2012) 076501.

Google Scholar

[12] D. Wang, C. Li, M. Furuta, S. Tomai, M. Sunagawa, M. Nishimura, M. Kasami, and K. Yano, Proc. AM-FPD'12 Conf., 2012, p.159.

Google Scholar

[13] S. -H. Choi and M. -K. Han, IEEE Electron Device Lett. 33 (2012) 396.

Google Scholar

[14] J. K. Jeong, J. H. Jeong, H. W. Yang, J. -S. Park, Y. -G. Mo, and H. D. Kim, Appl. Phys. Lett. 91 (2011) 113505.

Google Scholar

[15] H. Godo, D. Kawae, S. Yoshitomi, T. Sasaki, S. Ito, H. Ohara, H. Kishida, M. Takahashi, A. Miyanaga, and S. Yamazaki, Jpn. J. Appl. Phys. 49 (2010) 03CB04.

DOI: 10.1143/jjap.49.03cb04

Google Scholar

[16] K. Shimakawa, H. Hosono, K. Kikuchi, and H. Kawazoe, J. Non-Cryst. Solids 227 (1998) 513.

Google Scholar

[17] X. Li, E. Xin, L. Chen, J. Shi, and J. Zhang, AIP Adv. 3 (2013) 032137.

Google Scholar

[18] K. Takechi, S. Iwamatsu, T. Yahagi, Y. Watanabe, S. Kobayashi, and H. Tanabe, Jpn. J. Appl. Phys. 51 (2012) 104201.

Google Scholar

[19] D. W. Greve, Field Effect Devices and Applications: Devices for Portable, Low-power, and Imaging Systems, Prentice-Hall, 1998, 1st ed., p.280.

Google Scholar

[20] W. J. Maeng, J. S. Park, H. –S. Kim, E. S. Kim, K. S. Son, T. S. Kim, M. Ryu, and S. Lee, IEEE Electron Device Lett. 32 (2011) 1077.

Google Scholar

[21] J. -S. Park, J. K. Jeong, H. –J. Chung, Y. -G. Mo, and H. D. Kim, Appl. Phys. Lett. 92 (2008) 072104.

Google Scholar