Synthesis and Photocatalytic Activities of Bamboo-Like FeVO4 Nanocrystalline

Article Preview

Abstract:

The bamboo-like FeVO4 nanocrystallines were synthesized by a two-step method of the microwave hydrothermal-calcination, using Fe (NO3)3·9H2O and NH4VO3 as raw materials. The physical and photophysical properties of the as-prepared photocatalysts were fully characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV-vis diffuse reflectance spectra and photoluminescence (PL) analysis. The photocatalytic activities were evaluated by the decolorization of RhB solution under UV and visible light irradiation. The results reveal that the precursor solution concentration is 0.15 mol/L, the molar ratio n (Fe)/n (V) is 1, pH=3.0. The microwave hydrothermal reaction is at 180 °C for 120 min and then calcinated under 550 °C for 3 h so as to obtain the triclinic FeVO4 nanocrystalline. Along [120] and [110], the fore and aft phases of the crystal orientation are bonded self-assembly to grow into the bamboo-like nanocrystalline with the energy gap of 2.42 eV. Under the UV-light irradiation for 240 min, the degradation rate of RhB is up to 91.2%. Adding 0.1 mL H2O2 to the solution, the out-phase photo-fenton reaction occurs and the degradation rate to RhB can reach to 98.8% after 8 h visible-light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-134

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Wang, X.Z. Yuan, Y. Wu, G.G. Zeng, X.H. Chen, L.J. Leng, H. Li. Synthesis and Applications of Novel Graphitic Carbon Nitride/metal-organic Frameworks Mesoporous Photocatalyst for Dyes Removal [J]. Applied Catalysis B-Environmental, 174-175 (2015).

DOI: 10.1016/j.apcatb.2015.03.037

Google Scholar

[2] C.C. Zhao, G.Q. Tan, J. Huang, W. Yang, H.J. Ren, and A. Xia. Preparation of Self-Assembled Spherical g-C3N4/tz-Bi0. 92Gd0. 08VO4 Heterojunctions and Their Mineralization Properties [J]. ACS Appl. Mater. Interfaces, 7 (2015) 23949-23957.

DOI: 10.1021/acsami.5b06501

Google Scholar

[3] S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. BalkusJr. Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity [J]. ACS Catal. 2 (2012) 949-956.

DOI: 10.1021/cs200621c

Google Scholar

[4] X.M. Zhou, J.Y. Lan, G. Liu, K. Deng, Y.L. Yang, G.J. Nie, J.G. Yu, L.J. Zhi. Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light [J]. Angew. Chem. 124 (2012) 182-186.

DOI: 10.1002/ange.201105028

Google Scholar

[5] Z.G. Xiong, and X.S. Zhao. Nitrogen-Doped Titanate-Anatase Core-Shell Nanobelts With Exposed {101} Anatase Facets and Enhanced Visible Light Photocatalytic Activity [J]. Journal of the American Chemical Society, 134 (2012) 5754-5757.

DOI: 10.1021/ja300730c

Google Scholar

[6] Y.Y. Luo, G.Q. Tan, G.H. Dong, L.L. Zhang, J. Huang, W. Yang, C.C. Zhao, H.J. Ren. Structural transformation of Sm3+ doped BiVO4 with highphotocatalytic activity under simulated sun-light [J]. Applied Surface Science, 324 (2015) 505-511.

DOI: 10.1016/j.apsusc.2014.10.168

Google Scholar

[7] H. Tong, S.X. Ouyang, Y.P. Bi, and N. Umezawa. et al. Nano-photocatalytic Materials: Possibilities and Challenges [J]. Adv. Mater. 24 (2012) 229-251.

DOI: 10.1002/adma.201102752

Google Scholar

[8] P. Ju, P. Wang, B. Li, H. Fan, S.Y. Ai, D. Zhang, and Y.A. Wang. Novel Calcined Bi2WO6/BiVO4 Heterojunction Photocatalyst with Highly Enhanced Photocatalytic Activity [J]. Chem. Eng. J, 236 (2014) 430-437.

DOI: 10.1016/j.cej.2013.10.001

Google Scholar

[9] D.Q. He, L.L. Wang, H.Y. Li, T.Y. Yan, D.J. Wang, T.F. Xie. Self-assembled 3D Hierarchical Clew-like Bi2WO6 Microspheres: Synthesis, Photoinduced Charges Transfer Properties, and Photocatalytic Activities [J]. Cryst Eng Comm, 13 (2011) 4053-4059.

DOI: 10.1039/c0ce00918k

Google Scholar

[10] J.G. Yu, S.H. Wang, J.X. Low. Enhanced Photocatalytic Performance of Direct Z-scheme G-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air [J]. Phys. Chem. Chem. Phys. 15(39) (2013) 16883-16890.

DOI: 10.1039/c3cp53131g

Google Scholar

[11] Y.L. Tian, B.B. Chang, J.L. Lu. Hydrothermal Synthesis of Graphitic Carbon Nitride-Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities [J]. ACS Appl. Mater. Interfaces 7 (2015) 23949-23957.

DOI: 10.1021/am4013819

Google Scholar

[12] X.T. Hong, X.H. Wu, Q.Y. Zhang, M.F. Xiao, G.L. Yang, M.R. Qiu, and G.C. Han. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity [J]. Applied Surface Science, 258 (2012) 4801-4805.

DOI: 10.1016/j.apsusc.2012.01.102

Google Scholar

[13] M.Y. Wang, J. Ioccozia, L. Sun et al. Inorganic-modified Semiconductor TiO2 Nanotube Arrays for Photocatalysis [J]. Energy & Environmental Science, 7(7) (2014) 2182-2202.

DOI: 10.1039/c4ee00147h

Google Scholar

[14] W.Z. Wang, X.W. Huang. Preparation of p-n Junction Cu2O/BiVO4 Heterogeneous Nanostructures with Enhanced Visible-light Photocatalytic Activity [J]. Applied Catalysis B: Environmental, 134-135 (2013) 293-301.

DOI: 10.1016/j.apcatb.2013.01.013

Google Scholar

[15] A.J. Xu, G.T. Zhaori, M.L. Jia, Q. Lin. In Situ Electrical Conductivity Study of FeVO4 Catalys. J Mol Catal(Chin), 22(2) (2008) 162-165.

Google Scholar

[16] Hayashihara M, Eguchi M, Miura T and Kishi T. Lithiation Characteristics of FeVO4 [J]. Solid State Ionics, 98(1-2) (1997) 119-125.

DOI: 10.1016/s0167-2738(97)00107-0

Google Scholar

[17] B. Robertson, E. Kostiner. Crystal structure and Mössbauer Effect Investigation of FeVO4 [J]. Journal of Solid State Chemistry, 4(1) (1972)29-37.

DOI: 10.1016/0022-4596(72)90128-4

Google Scholar

[18] Y. Oka, T. Yao, N. Yamamoto, Y. Uedad, S. Kawasakie, M. Azumae, M. Takanoe. Hydrothermal synthesis, crystal structure, and magnetic properies of FeVO4-II [J]. Journal of Solid State Chemistry, 123(1) (1996) 54-59.

DOI: 10.1006/jssc.1996.0151

Google Scholar

[19] S. Ekambaram, K.C. Patil. Rapid Synthesis and Properties of FeVO4, AlVO4, YVO4 and Eu3+ doped YVO4 [J]. Journal of Alloys and Compounds, 217(1) (1995) 104-107.

DOI: 10.1016/0925-8388(94)01307-4

Google Scholar

[20] V.D. Nithya, R.K. Selvan, C. Sanjeeviraja, D.M. Radheep, S. Arumugam. Synthesis and Characterization of FeVO4 Nanoparticles [J]. Materials Research Bulletin, 46(10) (2011) 1654-1658.

DOI: 10.1016/j.materresbull.2011.06.005

Google Scholar

[21] Ming Wang, Liao Wang, Wenjie Zhang et al. Photocatalytic Degradation of Methyl Orange Using FeVO4 Photocatalyst [J]. J Funct Mater, 2(40) (2009) 201-207.

Google Scholar

[22] H.M. Fan, T.F. Jiang, H.Y. Li, et al. Effect of BiVO4 Crystalline Pphases on The Photoinduced Carriers Behavior and Photocatalytic Activity [J]. J. Phys. Chem. C, 116 (2012) 2425-2430.

Google Scholar

[23] G.S. Liu, S.W. Liu, Q.F. Lu, H.Y. Sun, Z.L. Xiu. Synthesis of Mesoporous BiPO4 Nanofibers by Electrospinning with Enhanced Photocatalytic Performances [J]. Ind. Eng. Chem. Res. 53 (2014), 13023-13029.

DOI: 10.1021/ie4044357

Google Scholar

[24] L.N. She, G.Q. Tan, H.J. Ren, C. Xu, C.C. Zhao A. Xia. BiPO4@glucose-based C Core-shell Nanorod Heterojunction Photocatalyst with Enhanced Photocatalytic Activity [J] Journal of Alloys and Compounds, 662 (2016) 220-231.

DOI: 10.1016/j.jallcom.2015.12.012

Google Scholar

[25] G.P. Dai, S.Q. Liu, Y. Liang, T.X. Luo. Synthesis and Enhanced Photoelectrocatalytic Activity of p-n Junction Co3O4 /TiO2 Nanotube Arrays [J]. Applied Surface Science, 264 (2013) 157-161.

DOI: 10.1016/j.apsusc.2012.09.160

Google Scholar

[26] H.J. Dong, C.N. Gang, J.X. Suna, C.M. Li, Y.G. Yua, D.H. Chen. A Novel High-efficiency Visible-light Sensitive Ag2CO3 Photocatalyst with Universal Photodegradation Performances: Simple Synthesis, Reaction Mechanism and First-principles Study [J]. Applied Catalysis B: Environmental, 134-135 (2013).

DOI: 10.1016/j.apcatb.2012.12.041

Google Scholar

[27] W. Yang, G.Q. Tan, H.J. Ren, L.L. Zhang, C.C. Zhao, and A. Xia. The Upconversion and Enhanced Visible Light Photocatalytic Activity of Er3+-doped Tetragonal BiVO4 [J]. RSC Adv. 5 (2015) 7324-7329.

DOI: 10.1039/c4ra12322k

Google Scholar

[28] J.H. Deng, J.Y. Jiang, Y.Y. Zhang, X.P. Lin, C.M. Du, Y. Xiong. FeVO4 as A Highly Active Heterogeneous Fenton-like Catalyst towards The Degradation of Orange II [J]. Applied Catalysis B: Environmental, 84(3-4) (2008) 468-473.

DOI: 10.1016/j.apcatb.2008.04.029

Google Scholar

[29] N. Kang, D.S. Lee J. Yoon. Kinetic Modeling of Fenton Oxidation of Phenol and Monochlorophenols [J]. Chemosphere, 47(9) (2002) 915-924.

DOI: 10.1016/s0045-6535(02)00067-x

Google Scholar

[30] W.P. Kwan, M. Bettina, B.M. Voelker. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-catalyzed Fenton-like Systems [J]. Environmental Science & Technology, 37(6) (2003) 1150-1158.

DOI: 10.1021/es020874g

Google Scholar

[31] G. Gislaine, W.F. Jardim, M.I. Litter, H.D. Mansilla. Destruction of EDTA Using Fenton and Photo-Fenton-like Reactions under UV-A Irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 167(1) (2004) 59-67.

DOI: 10.1016/j.jphotochem.2004.02.005

Google Scholar