[1]
H. Wang, X.Z. Yuan, Y. Wu, G.G. Zeng, X.H. Chen, L.J. Leng, H. Li. Synthesis and Applications of Novel Graphitic Carbon Nitride/metal-organic Frameworks Mesoporous Photocatalyst for Dyes Removal [J]. Applied Catalysis B-Environmental, 174-175 (2015).
DOI: 10.1016/j.apcatb.2015.03.037
Google Scholar
[2]
C.C. Zhao, G.Q. Tan, J. Huang, W. Yang, H.J. Ren, and A. Xia. Preparation of Self-Assembled Spherical g-C3N4/tz-Bi0. 92Gd0. 08VO4 Heterojunctions and Their Mineralization Properties [J]. ACS Appl. Mater. Interfaces, 7 (2015) 23949-23957.
DOI: 10.1021/acsami.5b06501
Google Scholar
[3]
S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. BalkusJr. Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity [J]. ACS Catal. 2 (2012) 949-956.
DOI: 10.1021/cs200621c
Google Scholar
[4]
X.M. Zhou, J.Y. Lan, G. Liu, K. Deng, Y.L. Yang, G.J. Nie, J.G. Yu, L.J. Zhi. Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light [J]. Angew. Chem. 124 (2012) 182-186.
DOI: 10.1002/ange.201105028
Google Scholar
[5]
Z.G. Xiong, and X.S. Zhao. Nitrogen-Doped Titanate-Anatase Core-Shell Nanobelts With Exposed {101} Anatase Facets and Enhanced Visible Light Photocatalytic Activity [J]. Journal of the American Chemical Society, 134 (2012) 5754-5757.
DOI: 10.1021/ja300730c
Google Scholar
[6]
Y.Y. Luo, G.Q. Tan, G.H. Dong, L.L. Zhang, J. Huang, W. Yang, C.C. Zhao, H.J. Ren. Structural transformation of Sm3+ doped BiVO4 with highphotocatalytic activity under simulated sun-light [J]. Applied Surface Science, 324 (2015) 505-511.
DOI: 10.1016/j.apsusc.2014.10.168
Google Scholar
[7]
H. Tong, S.X. Ouyang, Y.P. Bi, and N. Umezawa. et al. Nano-photocatalytic Materials: Possibilities and Challenges [J]. Adv. Mater. 24 (2012) 229-251.
DOI: 10.1002/adma.201102752
Google Scholar
[8]
P. Ju, P. Wang, B. Li, H. Fan, S.Y. Ai, D. Zhang, and Y.A. Wang. Novel Calcined Bi2WO6/BiVO4 Heterojunction Photocatalyst with Highly Enhanced Photocatalytic Activity [J]. Chem. Eng. J, 236 (2014) 430-437.
DOI: 10.1016/j.cej.2013.10.001
Google Scholar
[9]
D.Q. He, L.L. Wang, H.Y. Li, T.Y. Yan, D.J. Wang, T.F. Xie. Self-assembled 3D Hierarchical Clew-like Bi2WO6 Microspheres: Synthesis, Photoinduced Charges Transfer Properties, and Photocatalytic Activities [J]. Cryst Eng Comm, 13 (2011) 4053-4059.
DOI: 10.1039/c0ce00918k
Google Scholar
[10]
J.G. Yu, S.H. Wang, J.X. Low. Enhanced Photocatalytic Performance of Direct Z-scheme G-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air [J]. Phys. Chem. Chem. Phys. 15(39) (2013) 16883-16890.
DOI: 10.1039/c3cp53131g
Google Scholar
[11]
Y.L. Tian, B.B. Chang, J.L. Lu. Hydrothermal Synthesis of Graphitic Carbon Nitride-Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities [J]. ACS Appl. Mater. Interfaces 7 (2015) 23949-23957.
DOI: 10.1021/am4013819
Google Scholar
[12]
X.T. Hong, X.H. Wu, Q.Y. Zhang, M.F. Xiao, G.L. Yang, M.R. Qiu, and G.C. Han. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity [J]. Applied Surface Science, 258 (2012) 4801-4805.
DOI: 10.1016/j.apsusc.2012.01.102
Google Scholar
[13]
M.Y. Wang, J. Ioccozia, L. Sun et al. Inorganic-modified Semiconductor TiO2 Nanotube Arrays for Photocatalysis [J]. Energy & Environmental Science, 7(7) (2014) 2182-2202.
DOI: 10.1039/c4ee00147h
Google Scholar
[14]
W.Z. Wang, X.W. Huang. Preparation of p-n Junction Cu2O/BiVO4 Heterogeneous Nanostructures with Enhanced Visible-light Photocatalytic Activity [J]. Applied Catalysis B: Environmental, 134-135 (2013) 293-301.
DOI: 10.1016/j.apcatb.2013.01.013
Google Scholar
[15]
A.J. Xu, G.T. Zhaori, M.L. Jia, Q. Lin. In Situ Electrical Conductivity Study of FeVO4 Catalys. J Mol Catal(Chin), 22(2) (2008) 162-165.
Google Scholar
[16]
Hayashihara M, Eguchi M, Miura T and Kishi T. Lithiation Characteristics of FeVO4 [J]. Solid State Ionics, 98(1-2) (1997) 119-125.
DOI: 10.1016/s0167-2738(97)00107-0
Google Scholar
[17]
B. Robertson, E. Kostiner. Crystal structure and Mössbauer Effect Investigation of FeVO4 [J]. Journal of Solid State Chemistry, 4(1) (1972)29-37.
DOI: 10.1016/0022-4596(72)90128-4
Google Scholar
[18]
Y. Oka, T. Yao, N. Yamamoto, Y. Uedad, S. Kawasakie, M. Azumae, M. Takanoe. Hydrothermal synthesis, crystal structure, and magnetic properies of FeVO4-II [J]. Journal of Solid State Chemistry, 123(1) (1996) 54-59.
DOI: 10.1006/jssc.1996.0151
Google Scholar
[19]
S. Ekambaram, K.C. Patil. Rapid Synthesis and Properties of FeVO4, AlVO4, YVO4 and Eu3+ doped YVO4 [J]. Journal of Alloys and Compounds, 217(1) (1995) 104-107.
DOI: 10.1016/0925-8388(94)01307-4
Google Scholar
[20]
V.D. Nithya, R.K. Selvan, C. Sanjeeviraja, D.M. Radheep, S. Arumugam. Synthesis and Characterization of FeVO4 Nanoparticles [J]. Materials Research Bulletin, 46(10) (2011) 1654-1658.
DOI: 10.1016/j.materresbull.2011.06.005
Google Scholar
[21]
Ming Wang, Liao Wang, Wenjie Zhang et al. Photocatalytic Degradation of Methyl Orange Using FeVO4 Photocatalyst [J]. J Funct Mater, 2(40) (2009) 201-207.
Google Scholar
[22]
H.M. Fan, T.F. Jiang, H.Y. Li, et al. Effect of BiVO4 Crystalline Pphases on The Photoinduced Carriers Behavior and Photocatalytic Activity [J]. J. Phys. Chem. C, 116 (2012) 2425-2430.
Google Scholar
[23]
G.S. Liu, S.W. Liu, Q.F. Lu, H.Y. Sun, Z.L. Xiu. Synthesis of Mesoporous BiPO4 Nanofibers by Electrospinning with Enhanced Photocatalytic Performances [J]. Ind. Eng. Chem. Res. 53 (2014), 13023-13029.
DOI: 10.1021/ie4044357
Google Scholar
[24]
L.N. She, G.Q. Tan, H.J. Ren, C. Xu, C.C. Zhao A. Xia. BiPO4@glucose-based C Core-shell Nanorod Heterojunction Photocatalyst with Enhanced Photocatalytic Activity [J] Journal of Alloys and Compounds, 662 (2016) 220-231.
DOI: 10.1016/j.jallcom.2015.12.012
Google Scholar
[25]
G.P. Dai, S.Q. Liu, Y. Liang, T.X. Luo. Synthesis and Enhanced Photoelectrocatalytic Activity of p-n Junction Co3O4 /TiO2 Nanotube Arrays [J]. Applied Surface Science, 264 (2013) 157-161.
DOI: 10.1016/j.apsusc.2012.09.160
Google Scholar
[26]
H.J. Dong, C.N. Gang, J.X. Suna, C.M. Li, Y.G. Yua, D.H. Chen. A Novel High-efficiency Visible-light Sensitive Ag2CO3 Photocatalyst with Universal Photodegradation Performances: Simple Synthesis, Reaction Mechanism and First-principles Study [J]. Applied Catalysis B: Environmental, 134-135 (2013).
DOI: 10.1016/j.apcatb.2012.12.041
Google Scholar
[27]
W. Yang, G.Q. Tan, H.J. Ren, L.L. Zhang, C.C. Zhao, and A. Xia. The Upconversion and Enhanced Visible Light Photocatalytic Activity of Er3+-doped Tetragonal BiVO4 [J]. RSC Adv. 5 (2015) 7324-7329.
DOI: 10.1039/c4ra12322k
Google Scholar
[28]
J.H. Deng, J.Y. Jiang, Y.Y. Zhang, X.P. Lin, C.M. Du, Y. Xiong. FeVO4 as A Highly Active Heterogeneous Fenton-like Catalyst towards The Degradation of Orange II [J]. Applied Catalysis B: Environmental, 84(3-4) (2008) 468-473.
DOI: 10.1016/j.apcatb.2008.04.029
Google Scholar
[29]
N. Kang, D.S. Lee J. Yoon. Kinetic Modeling of Fenton Oxidation of Phenol and Monochlorophenols [J]. Chemosphere, 47(9) (2002) 915-924.
DOI: 10.1016/s0045-6535(02)00067-x
Google Scholar
[30]
W.P. Kwan, M. Bettina, B.M. Voelker. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-catalyzed Fenton-like Systems [J]. Environmental Science & Technology, 37(6) (2003) 1150-1158.
DOI: 10.1021/es020874g
Google Scholar
[31]
G. Gislaine, W.F. Jardim, M.I. Litter, H.D. Mansilla. Destruction of EDTA Using Fenton and Photo-Fenton-like Reactions under UV-A Irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 167(1) (2004) 59-67.
DOI: 10.1016/j.jphotochem.2004.02.005
Google Scholar