Systematic Study on Morphology of Anodic Alumina Produced by Hard Anodization in the Electrolytes Modified with Ethylene Glycol

Article Preview

Abstract:

The morphology of anodic aluminum oxide (AAO) produced by hard anodization (HA) in oxalic acid electrolyte modified with various amount of ethylene glycol (EG) was investigated. The EG induces a considerable changes in the AAO morphology. The AAO transforms from continuous nanoporous film to separated AAO nanotubes upon addition of increasing amount of EG. In the sample II (4:1 v/v water to EG mixture) well separated nanotubes with variable wall thickness are produced. In the sample III (1:1 v/v water to EG solution) the nanotubes “imprisoned” in a partially dissolved cell skeleton with regularly spaced apertures along the cell are formed. In the electrolyte with the highest amount of EG (1:4 v/v water to EG mixture) an irregular AAO consisted of formless oxide and the oxide in a form of separated tubes of thick walls and small pores is fabricated. Based on the data obtained in this work it is concluded that the C containing ionic species originating from the EG dissociation along with the high electric field (E) operating during the HA were responsible for the separation phenomena. These ions, driven by the high E, were transported from the electrolyte to the pore base, where they were being embedded into the AAO framework generating strong mechanical stresses at cell boundaries and initiating the cell cleavage process. Moreover, some of these charged particles were ionized under the high E providing additional electrons to the overall current flow and giving rise to a sudden current density boost in the samples II and III.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-178

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature 5 (2006) 741-747.

DOI: 10.1038/nmat1717

Google Scholar

[2] Y. B. Li, M. J. Zheng and L. Ma, High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range, Appl. Phys. Lett. 91 (2007) 073109 3pp.

DOI: 10.1063/1.2772184

Google Scholar

[3] C. Cheng, A. H. W. Ngan, Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization, Nanotechnology 24 (2013) 215602 (10pp).

DOI: 10.1088/0957-4484/24/21/215602

Google Scholar

[4] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, ACS Nano 2 (2008) 302-310.

DOI: 10.1021/nn7001322

Google Scholar

[5] Y. Li, Z. Y. Ling, S. S. Chen, J. C. Wang, Fabrication of novel porous anodic alumina membranes by two-step hard anodization, Nanotechnology 19 (2008) 225604 (6pp).

DOI: 10.1088/0957-4484/19/22/225604

Google Scholar

[6] Y. Li, M. Zheng, L. Ma, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization, Nanotechnology 17 (2006) 5101-5105.

DOI: 10.1088/0957-4484/17/20/010

Google Scholar

[7] S. Ono, M. Saito, H. Asoh, self-ordering of anodic porous alumina induced by local current concentration: burning, Electrochem. Solid-State Lett. 7 (2004) B21-B24.

DOI: 10.1149/1.1738553

Google Scholar

[8] S. Ono, M. Saito, M. Ishiguro, H. Asoh, Controlling factor of self-ordering of anodic porous alumina, J. Electrochem. Soc. 151 (2004) B473-B478.

DOI: 10.1149/1.1767838

Google Scholar

[9] L. Yi, L. Zhiyuan, C. Shuoshuo, H. Xing, H. Xinhua, Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization, Chem. Commun. 46 (2010) 309-311.

DOI: 10.1039/b914703a

Google Scholar

[10] L. Yi, L. Zhiyuan, H. Xing, L. Yisen, C. Yi, Formation and microstructures of unique nanoporous AAO films fabricated by high voltage anodization, J. Mater. Chem. 21 (2011) 9661-9666.

DOI: 10.1039/c1jm10781j

Google Scholar

[11] L. Yi, L. Zhiyuan, H. Xing, L. Yisen, C. Yi, Investigation of intrinsic mechanisms of aluminium anodization processes by analyzing the current density, RSC Advances 2 (2012) 5164-5171.

DOI: 10.1039/c2ra01050j

Google Scholar

[12] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization, Adv. Mater. 17 (2005) 2115–2119.

DOI: 10.1002/adma.200500401

Google Scholar

[13] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuda, A. Yasumori, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, J. Electrochem. Soc. 153 (2006) B384 – B391.

DOI: 10.1149/1.2218822

Google Scholar

[14] Y. Li, Z. Y. Ling, X. Hu, Y. S. Liu and Y. Chang, Unique fusiform alumina nanotubes fabricated by combined anodization, Chem. Commun. 47 (2011) 2173-2175.

DOI: 10.1039/c0cc04907g

Google Scholar

[15] Y. Song, H. Wu, B. Yang, J. Wang, J. Yang, C. Xu, X. Zhu, H. Jia, Effect of solvent on the structural features and the degree of ordering of pore arrays in porous anodic alumina J. Electroanalytical Chem. 682 (2012) 110-115.

DOI: 10.1016/j.jelechem.2012.07.026

Google Scholar

[16] Q. Wang, Y. Long, B. Sun, Fabrication of highly ordered porous anodic alumina membrane with ultra-large pore intervals in ethylene glycol-modified citric acid solution, J. Porous Mater. 20 (2013) 785-788.

DOI: 10.1007/s10934-012-9653-3

Google Scholar

[17] W. J. Stępniowski, D. Forbot, M. Norek, M. Michalska-Domańska, A. Król, The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide, Electrochimica Acta 133 (2014) 57-64.

DOI: 10.1016/j.electacta.2014.04.039

Google Scholar

[18] W. Chen, J. -S. Wu, X. -H. Xia, Porous anodic alumina with continuously manipulated pore/cell size, ACS Nano 2 (2008) 959-965.

DOI: 10.1021/nn700389j

Google Scholar

[19] X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng, G. Ding, H. Zeng, X. Xu, Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid, Surface & Coatings Technology 254 (2014) 398-401.

DOI: 10.1016/j.surfcoat.2014.06.050

Google Scholar

[20] M. Norek, M. Dopierała, W. J. Stępniowski, Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina, J. Electroanalytical Chem. 750 (2015).

DOI: 10.1016/j.jelechem.2015.05.024

Google Scholar

[21] M. Norek, W. J. Stępniowski, D. Siemiaszko, Effect of ethylene glycol on morphology of anodic alumina prepared in hard anodization, J. Electroanal. Chem. 762 (2016) 20-28.

DOI: 10.1016/j.jelechem.2015.12.026

Google Scholar

[22] V. Vega, J. García, J. M. Montero-Moreno, B. Hernando, J. Bachmann, V. M. Prida, K. Nielsch, Unveiling the hard anodization regime of aluminum: insight into nanopores self-organization and growth mechanism, ACS Appl. Mater. Interfaces 7 (2015).

DOI: 10.1021/acsami.5b10712

Google Scholar

[23] I. Vrublevsky, A. Jagminas, J. Schreckenbach and W. A. Goedel, Embedded space charge in porous alumina films formed in phosphoric acid, Electrochim. Acta, 2007, 53, 300-304.

DOI: 10.1016/j.electacta.2007.04.038

Google Scholar

[24] X. F. Zhu, Y. Song, L. Liu, C. Y. Wang, J. Zheng, H. B. Jia and X. L. Wang, Electronic currents and the formation of nanopores in porous anodic alumina, Nanotechnology, 2009, 20, 475303 (7pp).

DOI: 10.1088/0957-4484/20/47/475303

Google Scholar

[25] Z. Su, G. Hähner, W. Zhou, Investigation of the pore formation in anodic aluminium oxide, J. Mater. Chem. 18 (2008) 5787-5795.

DOI: 10.1039/b812432a

Google Scholar

[26] G. Akerlof, Dielectric constants of some organic solvent-water mixtures at various temperatures, J. Am. Chem. Soc. 54 (1932) 4125-4139.

DOI: 10.1021/ja01350a001

Google Scholar

[27] M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Gripshover, V. H. Gehman, Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design, Proceedings of the IEEE 74 (1986) 1182-1221.

DOI: 10.1109/proc.1986.13611

Google Scholar

[28] J. Martín, C. V. Manzano, O. Caballero-Calero, M. Martín-González, High-aspect-ratio and highly ordered 15-nm porous alumina templates, ACS Appl. Mater. Interfaces 5 (2013) 72-79.

DOI: 10.1021/am3020718

Google Scholar

[29] X. Y. Han, W. Z. Shen, Improved two-step anodization technique for ordered porous anodic aluminum membranes, J. Electroanalytical Chem. 655 (2011) 56-64.

DOI: 10.1016/j.jelechem.2011.02.008

Google Scholar

[30] F. Le Coz, L. Arurault, L. Datas, Chemical analysis of a single basic cell of porous anodic aluminium oxide templates, Mater. Character. 61 (2010) 283-288.

DOI: 10.1016/j.matchar.2009.12.008

Google Scholar

[31] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz and U. Gösele, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nat. Nanotechnol. 3 (2008) 234-239.

DOI: 10.1038/nnano.2008.54

Google Scholar

[32] S. Ono, H. Ichinose, N. Masuko, Defects in porous anodic films formed on high purity aluminum. J. Electrochem. Soc. 138 (1991) 3705–3710.

DOI: 10.1149/1.2085484

Google Scholar

[33] Y. F. Mei, X. L. Wu, X. F. Shao, G. S Huang, G. G. Siu, Formation mechanism of alumina nanotube arrays. Phys. Lett. A 309 (2003) 109–113.

DOI: 10.1016/s0375-9601(03)00130-0

Google Scholar

[34] Z. Su, W. Zhou, F. Jianga, M. Hong, Anodic formation of nanoporous and nanotubular metal oxides, J. Mater. Chem. 22 (2012) 535–544.

DOI: 10.1039/c1jm13338a

Google Scholar

[35] J. R. Morlidge, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood, Formation of anodic alumina films in tungstate/ethylene glycol electrolyte, Thin Solid Films 258 (1995) 341-346.

DOI: 10.1016/0040-6090(94)06393-1

Google Scholar