[1]
W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature 5 (2006) 741-747.
DOI: 10.1038/nmat1717
Google Scholar
[2]
Y. B. Li, M. J. Zheng and L. Ma, High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range, Appl. Phys. Lett. 91 (2007) 073109 3pp.
DOI: 10.1063/1.2772184
Google Scholar
[3]
C. Cheng, A. H. W. Ngan, Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization, Nanotechnology 24 (2013) 215602 (10pp).
DOI: 10.1088/0957-4484/24/21/215602
Google Scholar
[4]
K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, ACS Nano 2 (2008) 302-310.
DOI: 10.1021/nn7001322
Google Scholar
[5]
Y. Li, Z. Y. Ling, S. S. Chen, J. C. Wang, Fabrication of novel porous anodic alumina membranes by two-step hard anodization, Nanotechnology 19 (2008) 225604 (6pp).
DOI: 10.1088/0957-4484/19/22/225604
Google Scholar
[6]
Y. Li, M. Zheng, L. Ma, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization, Nanotechnology 17 (2006) 5101-5105.
DOI: 10.1088/0957-4484/17/20/010
Google Scholar
[7]
S. Ono, M. Saito, H. Asoh, self-ordering of anodic porous alumina induced by local current concentration: burning, Electrochem. Solid-State Lett. 7 (2004) B21-B24.
DOI: 10.1149/1.1738553
Google Scholar
[8]
S. Ono, M. Saito, M. Ishiguro, H. Asoh, Controlling factor of self-ordering of anodic porous alumina, J. Electrochem. Soc. 151 (2004) B473-B478.
DOI: 10.1149/1.1767838
Google Scholar
[9]
L. Yi, L. Zhiyuan, C. Shuoshuo, H. Xing, H. Xinhua, Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization, Chem. Commun. 46 (2010) 309-311.
DOI: 10.1039/b914703a
Google Scholar
[10]
L. Yi, L. Zhiyuan, H. Xing, L. Yisen, C. Yi, Formation and microstructures of unique nanoporous AAO films fabricated by high voltage anodization, J. Mater. Chem. 21 (2011) 9661-9666.
DOI: 10.1039/c1jm10781j
Google Scholar
[11]
L. Yi, L. Zhiyuan, H. Xing, L. Yisen, C. Yi, Investigation of intrinsic mechanisms of aluminium anodization processes by analyzing the current density, RSC Advances 2 (2012) 5164-5171.
DOI: 10.1039/c2ra01050j
Google Scholar
[12]
S. Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization, Adv. Mater. 17 (2005) 2115–2119.
DOI: 10.1002/adma.200500401
Google Scholar
[13]
S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuda, A. Yasumori, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, J. Electrochem. Soc. 153 (2006) B384 – B391.
DOI: 10.1149/1.2218822
Google Scholar
[14]
Y. Li, Z. Y. Ling, X. Hu, Y. S. Liu and Y. Chang, Unique fusiform alumina nanotubes fabricated by combined anodization, Chem. Commun. 47 (2011) 2173-2175.
DOI: 10.1039/c0cc04907g
Google Scholar
[15]
Y. Song, H. Wu, B. Yang, J. Wang, J. Yang, C. Xu, X. Zhu, H. Jia, Effect of solvent on the structural features and the degree of ordering of pore arrays in porous anodic alumina J. Electroanalytical Chem. 682 (2012) 110-115.
DOI: 10.1016/j.jelechem.2012.07.026
Google Scholar
[16]
Q. Wang, Y. Long, B. Sun, Fabrication of highly ordered porous anodic alumina membrane with ultra-large pore intervals in ethylene glycol-modified citric acid solution, J. Porous Mater. 20 (2013) 785-788.
DOI: 10.1007/s10934-012-9653-3
Google Scholar
[17]
W. J. Stępniowski, D. Forbot, M. Norek, M. Michalska-Domańska, A. Król, The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide, Electrochimica Acta 133 (2014) 57-64.
DOI: 10.1016/j.electacta.2014.04.039
Google Scholar
[18]
W. Chen, J. -S. Wu, X. -H. Xia, Porous anodic alumina with continuously manipulated pore/cell size, ACS Nano 2 (2008) 959-965.
DOI: 10.1021/nn700389j
Google Scholar
[19]
X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng, G. Ding, H. Zeng, X. Xu, Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid, Surface & Coatings Technology 254 (2014) 398-401.
DOI: 10.1016/j.surfcoat.2014.06.050
Google Scholar
[20]
M. Norek, M. Dopierała, W. J. Stępniowski, Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina, J. Electroanalytical Chem. 750 (2015).
DOI: 10.1016/j.jelechem.2015.05.024
Google Scholar
[21]
M. Norek, W. J. Stępniowski, D. Siemiaszko, Effect of ethylene glycol on morphology of anodic alumina prepared in hard anodization, J. Electroanal. Chem. 762 (2016) 20-28.
DOI: 10.1016/j.jelechem.2015.12.026
Google Scholar
[22]
V. Vega, J. García, J. M. Montero-Moreno, B. Hernando, J. Bachmann, V. M. Prida, K. Nielsch, Unveiling the hard anodization regime of aluminum: insight into nanopores self-organization and growth mechanism, ACS Appl. Mater. Interfaces 7 (2015).
DOI: 10.1021/acsami.5b10712
Google Scholar
[23]
I. Vrublevsky, A. Jagminas, J. Schreckenbach and W. A. Goedel, Embedded space charge in porous alumina films formed in phosphoric acid, Electrochim. Acta, 2007, 53, 300-304.
DOI: 10.1016/j.electacta.2007.04.038
Google Scholar
[24]
X. F. Zhu, Y. Song, L. Liu, C. Y. Wang, J. Zheng, H. B. Jia and X. L. Wang, Electronic currents and the formation of nanopores in porous anodic alumina, Nanotechnology, 2009, 20, 475303 (7pp).
DOI: 10.1088/0957-4484/20/47/475303
Google Scholar
[25]
Z. Su, G. Hähner, W. Zhou, Investigation of the pore formation in anodic aluminium oxide, J. Mater. Chem. 18 (2008) 5787-5795.
DOI: 10.1039/b812432a
Google Scholar
[26]
G. Akerlof, Dielectric constants of some organic solvent-water mixtures at various temperatures, J. Am. Chem. Soc. 54 (1932) 4125-4139.
DOI: 10.1021/ja01350a001
Google Scholar
[27]
M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Gripshover, V. H. Gehman, Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design, Proceedings of the IEEE 74 (1986) 1182-1221.
DOI: 10.1109/proc.1986.13611
Google Scholar
[28]
J. Martín, C. V. Manzano, O. Caballero-Calero, M. Martín-González, High-aspect-ratio and highly ordered 15-nm porous alumina templates, ACS Appl. Mater. Interfaces 5 (2013) 72-79.
DOI: 10.1021/am3020718
Google Scholar
[29]
X. Y. Han, W. Z. Shen, Improved two-step anodization technique for ordered porous anodic aluminum membranes, J. Electroanalytical Chem. 655 (2011) 56-64.
DOI: 10.1016/j.jelechem.2011.02.008
Google Scholar
[30]
F. Le Coz, L. Arurault, L. Datas, Chemical analysis of a single basic cell of porous anodic aluminium oxide templates, Mater. Character. 61 (2010) 283-288.
DOI: 10.1016/j.matchar.2009.12.008
Google Scholar
[31]
W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz and U. Gösele, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nat. Nanotechnol. 3 (2008) 234-239.
DOI: 10.1038/nnano.2008.54
Google Scholar
[32]
S. Ono, H. Ichinose, N. Masuko, Defects in porous anodic films formed on high purity aluminum. J. Electrochem. Soc. 138 (1991) 3705–3710.
DOI: 10.1149/1.2085484
Google Scholar
[33]
Y. F. Mei, X. L. Wu, X. F. Shao, G. S Huang, G. G. Siu, Formation mechanism of alumina nanotube arrays. Phys. Lett. A 309 (2003) 109–113.
DOI: 10.1016/s0375-9601(03)00130-0
Google Scholar
[34]
Z. Su, W. Zhou, F. Jianga, M. Hong, Anodic formation of nanoporous and nanotubular metal oxides, J. Mater. Chem. 22 (2012) 535–544.
DOI: 10.1039/c1jm13338a
Google Scholar
[35]
J. R. Morlidge, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood, Formation of anodic alumina films in tungstate/ethylene glycol electrolyte, Thin Solid Films 258 (1995) 341-346.
DOI: 10.1016/0040-6090(94)06393-1
Google Scholar