[1]
W.L. Huang, Q. Zhu, DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states, J. Comput. Chem., 30 (2009) 183-190.
DOI: 10.1002/jcc.21055
Google Scholar
[2]
W. Wang, M. Shang, W. Yin, J. Ren, L. Zhou, Recent progress on the Bismuth containing complex oxide photocatalysts, J. Inorg. Mater., 27 (2012) 11-18.
DOI: 10.3724/sp.j.1077.2012.00011
Google Scholar
[3]
H. Zhao, F. Tian, R. Wang, R. Chen, A review on Bismuth-related nanomaterials for photocatalysis, Rev. Adv. Sci. Eng., 3 (2014) 3-27.
Google Scholar
[4]
L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms, Environ. Sci. Nano., 1 (2014) 90-112.
DOI: 10.1039/c3en00098b
Google Scholar
[5]
K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal., B, 68 (2006) 125-129.
DOI: 10.1016/j.apcatb.2006.08.002
Google Scholar
[6]
M.A. Gondal, X.F. Chang, Z.H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J., 165 (2010) 250-257.
DOI: 10.1016/j.cej.2010.09.025
Google Scholar
[7]
L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The {001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun., 47 (2011) 6951-6953.
DOI: 10.1039/c1cc11015b
Google Scholar
[8]
J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc., 134 (2012) 4473-4476.
DOI: 10.1021/ja210484t
Google Scholar
[9]
B. Cao, P. Dong, S. Cao, Y. Wang, BiOCl/Ag3PO4 composites with highly enhanced ultraviolet and visible light photocatalytic performances, J. Am. Ceram. Soc., 96 (2012) 544-548.
DOI: 10.1111/jace.12073
Google Scholar
[10]
X. Xiao, R. Hao, M. Liang, X. Zuo, J. Nan, L. Li, W. Zhang, One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A, J. Hazard. Mater., 233–234 (2012).
DOI: 10.1016/j.jhazmat.2012.06.062
Google Scholar
[11]
S. Jiang, K. Zhou, Y. Shi, S. Lo, H. Xu, Y. Hu, Z. Gui, In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity, Appl. Surf. Sci., 290 (2014) 313-319.
DOI: 10.1016/j.apsusc.2013.11.074
Google Scholar
[12]
S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C, 116 (2012) 26306-26312.
DOI: 10.1021/jp306874z
Google Scholar
[13]
S. Balachandran, Heteroarchitectured Ag–Bi2O3–ZnO as a bifunctional nanomaterial, RSC Adv., 6 (2016) 20247-20257.
DOI: 10.1039/c5ra27882a
Google Scholar
[14]
F. Mushtaq, M. Guerrero, M.S. Sakar, M. Hoop, A.M. Lindo, J. Sort, X. Chen, B.J. Nelson, E. Pellicer, S. Pané, Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation, J. Mater. Chem. A, 3 (2015) 23670-23676.
DOI: 10.1039/c5ta05825b
Google Scholar
[15]
J. Hu, G. Xu, J. Wang, J. Lv, X. Zhang, T. Xie, Z. Zheng, Y. Wu, Photocatalytic property of a Bi2O3 nanoparticle modified BiOCl composite with a nanolayered hierarchical structure synthesized by in situ reactions, Dalton. Trans., 44 (2015).
DOI: 10.1039/c4dt03953j
Google Scholar
[16]
Z. Cui, S. Li, J. Zhou, J. Zhang, S. Ge, Z. Zheng, Preparation and optical properties of spherical Bi2S3 nanoparticles by in situ thermal sulfuration method, NANO, 10 (2015) 1550021-1550026.
DOI: 10.1142/s1793292015500216
Google Scholar
[17]
Q. Xiang, J. Yu, P.K. Wong, Quantitative characterization of hydroxyl radicals produced by various photocatalysts, J. Colloid Interface Sci., 357 (2011) 163-167.
DOI: 10.1016/j.jcis.2011.01.093
Google Scholar
[18]
Z. Cui, L. Mi, D. Zeng, Oriented attachment growth of BiOCl nanosheets with exposed {110} facets and photocatalytic activity of the hierarchical nanostructures, J. Alloys Compd., 549 (2013) 70-76.
DOI: 10.1016/j.jallcom.2012.09.075
Google Scholar
[19]
P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche, Zeit. Tech. Phys., 12 (1931) 593-601.
Google Scholar
[20]
Z. Cui, F. Zhang, Z. Zheng, W. Fa, B. Huang, Preparation and characterisation of Ag3PO4/BiOBr composites with enhanced visible light driven photocatalytic performance, Mater. Technol., 29 (2014) 214-219.
DOI: 10.1179/1753555714y.0000000131
Google Scholar
[21]
H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, R. Abe, Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting, J. Am. Chem. Soc., 138 (2016) 2082-(2085).
DOI: 10.1021/jacs.5b11191
Google Scholar
[22]
K. -H. Ye, X. Yu, Z. Qiu, Y. Zhu, X. Lu, Y. Zhang, Facile synthesis of bismuth oxide/bismuth vanadate heterostructures for efficient photoelectrochemical cells, RSC Adv., 5 (2015) 34152-34156.
DOI: 10.1039/c5ra03500g
Google Scholar
[23]
Z. Deng, F. Tang, A.J. Muscat, Strong blue photoluminescence from single-crystalline Bismuth Oxychloride nanoplates, Nanotechnology, 19 (2008) 295705-295705.
DOI: 10.1088/0957-4484/19/29/295705
Google Scholar
[24]
S. Cao, C. Guo, Y. Lv, Y. Guo, Q. Liu, A novel BiOCl film with flowerlike hierarchical structures and its optical properties, Nanotechnology, 20 (2009) 27570201-27570207.
DOI: 10.1088/0957-4484/20/27/275702
Google Scholar
[25]
M. Gao, D. Zhang, X. Pu, M. Li, Y.M. Yu, J.J. Shim, P. Cai, S.I. Kim, H.J. Seo, Combustion synthesis of BiOCl with tunable percentage of exposed {001} facets and enhanced photocatalytic properties, J. Am. Ceram. Soc., 98 (2015) 1515-1519.
DOI: 10.1111/jace.13493
Google Scholar
[26]
Y. Ao, K. Wang, P. Wang, C. Wang, J. Hou, Fabrication of p-type BiOCl/n-type La2Ti2O7 facet-coupling heterostructure with enhanced photocatalytic performance, RSC Adv., 6 (2016) 48599-48609.
DOI: 10.1039/c6ra05166a
Google Scholar
[27]
J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight, Acs Appl. Mater. Interfaces, 7 (2015).
DOI: 10.1021/acsami.5b05268
Google Scholar
[28]
L. Zhu, L. Wang, N. Bing, P. Li, L. Wang, C. Huang, G. Liao, In situ synthesis of N-doped carbon nanotubes–BiOCl nanocomposites and their synergistic photocatalytic performance, RSC Adv., 6 (2016) 2926-2934.
DOI: 10.1039/c5ra24149a
Google Scholar
[29]
B.M. Pirzada, N.A. Mir, N. Qutub, O. Mehraj, S. Sabir, M. Muneer, Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Mater. Sci. Eng., B, 193 (2015) 137-145.
DOI: 10.1016/j.mseb.2014.12.005
Google Scholar
[30]
F. Shen, L. Zhou, J. Shi, M. Xing, J. Zhang, Preparation and characterization of SiO2/BiOX (X= Cl, Br, I) films with high visible-light activity, RSC Adv., 5 (2015) 4918-4925.
DOI: 10.1039/c4ra10227d
Google Scholar
[31]
K.M. Schindler, M. Kunst, Charge-carrier dynamics in titania powders, J. Phys. Chem., 94 (1990) 8222-8226.
DOI: 10.1021/j100384a045
Google Scholar
[32]
T. Joana, J. Tom, M. Guido, Experimental evidence for electron localization on Au upon photo- activation of Au/anatase catalysts, Phys. Chem. Chem. Phys., 11 (2009) 2708-2714.
DOI: 10.1039/b820425j
Google Scholar