Modification of BiOCl Nanosheets with Bi2O3 Nanoparticles by a Facile Two Step Method and the Enhanced Photocatalytic Performance of the Composites

Article Preview

Abstract:

Bi2O3/BiOCl composite photocatalysts were produced by a facile two step method, including ultrasonically modifying BiOCl nanosheets with Bi nanoparticles first and the subsequent in situ thermal oxidation process. The samples were characterized by XRD, SEM, UV-vis and photoluminescence techniques. The photocatalytic activities were evaluated by photodegrading Rhodamine B under Xe light irradiation. The abilities of generating hydroxyl radicals during photocatalysis were tested by fluorescence method. The results show that Bi2O3 NPs were randomly distributed on the surface of BiOCl nanosheets. The photocatalytic efficiency was enhanced after modification and the best photocatalytic activity was obtained when the mole ratio of Bi2O3 to BiOCl was 0.24. The corresponding photochemical reaction rate of Bi2O3/BiOCl was 7 times that of BiOCl nanosheets and 5 times that of Bi2O3 nanoparticles. The improved performance of the composites was considered to associate with the extended light response range and the promoted charge carrier separation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-211

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.L. Huang, Q. Zhu, DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states, J. Comput. Chem., 30 (2009) 183-190.

DOI: 10.1002/jcc.21055

Google Scholar

[2] W. Wang, M. Shang, W. Yin, J. Ren, L. Zhou, Recent progress on the Bismuth containing complex oxide photocatalysts, J. Inorg. Mater., 27 (2012) 11-18.

DOI: 10.3724/sp.j.1077.2012.00011

Google Scholar

[3] H. Zhao, F. Tian, R. Wang, R. Chen, A review on Bismuth-related nanomaterials for photocatalysis, Rev. Adv. Sci. Eng., 3 (2014) 3-27.

Google Scholar

[4] L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms, Environ. Sci. Nano., 1 (2014) 90-112.

DOI: 10.1039/c3en00098b

Google Scholar

[5] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal., B, 68 (2006) 125-129.

DOI: 10.1016/j.apcatb.2006.08.002

Google Scholar

[6] M.A. Gondal, X.F. Chang, Z.H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J., 165 (2010) 250-257.

DOI: 10.1016/j.cej.2010.09.025

Google Scholar

[7] L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The {001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun., 47 (2011) 6951-6953.

DOI: 10.1039/c1cc11015b

Google Scholar

[8] J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc., 134 (2012) 4473-4476.

DOI: 10.1021/ja210484t

Google Scholar

[9] B. Cao, P. Dong, S. Cao, Y. Wang, BiOCl/Ag3PO4 composites with highly enhanced ultraviolet and visible light photocatalytic performances, J. Am. Ceram. Soc., 96 (2012) 544-548.

DOI: 10.1111/jace.12073

Google Scholar

[10] X. Xiao, R. Hao, M. Liang, X. Zuo, J. Nan, L. Li, W. Zhang, One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A, J. Hazard. Mater., 233–234 (2012).

DOI: 10.1016/j.jhazmat.2012.06.062

Google Scholar

[11] S. Jiang, K. Zhou, Y. Shi, S. Lo, H. Xu, Y. Hu, Z. Gui, In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity, Appl. Surf. Sci., 290 (2014) 313-319.

DOI: 10.1016/j.apsusc.2013.11.074

Google Scholar

[12] S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C, 116 (2012) 26306-26312.

DOI: 10.1021/jp306874z

Google Scholar

[13] S. Balachandran, Heteroarchitectured Ag–Bi2O3–ZnO as a bifunctional nanomaterial, RSC Adv., 6 (2016) 20247-20257.

DOI: 10.1039/c5ra27882a

Google Scholar

[14] F. Mushtaq, M. Guerrero, M.S. Sakar, M. Hoop, A.M. Lindo, J. Sort, X. Chen, B.J. Nelson, E. Pellicer, S. Pané, Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation, J. Mater. Chem. A, 3 (2015) 23670-23676.

DOI: 10.1039/c5ta05825b

Google Scholar

[15] J. Hu, G. Xu, J. Wang, J. Lv, X. Zhang, T. Xie, Z. Zheng, Y. Wu, Photocatalytic property of a Bi2O3 nanoparticle modified BiOCl composite with a nanolayered hierarchical structure synthesized by in situ reactions, Dalton. Trans., 44 (2015).

DOI: 10.1039/c4dt03953j

Google Scholar

[16] Z. Cui, S. Li, J. Zhou, J. Zhang, S. Ge, Z. Zheng, Preparation and optical properties of spherical Bi2S3 nanoparticles by in situ thermal sulfuration method, NANO, 10 (2015) 1550021-1550026.

DOI: 10.1142/s1793292015500216

Google Scholar

[17] Q. Xiang, J. Yu, P.K. Wong, Quantitative characterization of hydroxyl radicals produced by various photocatalysts, J. Colloid Interface Sci., 357 (2011) 163-167.

DOI: 10.1016/j.jcis.2011.01.093

Google Scholar

[18] Z. Cui, L. Mi, D. Zeng, Oriented attachment growth of BiOCl nanosheets with exposed {110} facets and photocatalytic activity of the hierarchical nanostructures, J. Alloys Compd., 549 (2013) 70-76.

DOI: 10.1016/j.jallcom.2012.09.075

Google Scholar

[19] P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche, Zeit. Tech. Phys., 12 (1931) 593-601.

Google Scholar

[20] Z. Cui, F. Zhang, Z. Zheng, W. Fa, B. Huang, Preparation and characterisation of Ag3PO4/BiOBr composites with enhanced visible light driven photocatalytic performance, Mater. Technol., 29 (2014) 214-219.

DOI: 10.1179/1753555714y.0000000131

Google Scholar

[21] H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, R. Abe, Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting, J. Am. Chem. Soc., 138 (2016) 2082-(2085).

DOI: 10.1021/jacs.5b11191

Google Scholar

[22] K. -H. Ye, X. Yu, Z. Qiu, Y. Zhu, X. Lu, Y. Zhang, Facile synthesis of bismuth oxide/bismuth vanadate heterostructures for efficient photoelectrochemical cells, RSC Adv., 5 (2015) 34152-34156.

DOI: 10.1039/c5ra03500g

Google Scholar

[23] Z. Deng, F. Tang, A.J. Muscat, Strong blue photoluminescence from single-crystalline Bismuth Oxychloride nanoplates, Nanotechnology, 19 (2008) 295705-295705.

DOI: 10.1088/0957-4484/19/29/295705

Google Scholar

[24] S. Cao, C. Guo, Y. Lv, Y. Guo, Q. Liu, A novel BiOCl film with flowerlike hierarchical structures and its optical properties, Nanotechnology, 20 (2009) 27570201-27570207.

DOI: 10.1088/0957-4484/20/27/275702

Google Scholar

[25] M. Gao, D. Zhang, X. Pu, M. Li, Y.M. Yu, J.J. Shim, P. Cai, S.I. Kim, H.J. Seo, Combustion synthesis of BiOCl with tunable percentage of exposed {001} facets and enhanced photocatalytic properties, J. Am. Ceram. Soc., 98 (2015) 1515-1519.

DOI: 10.1111/jace.13493

Google Scholar

[26] Y. Ao, K. Wang, P. Wang, C. Wang, J. Hou, Fabrication of p-type BiOCl/n-type La2Ti2O7 facet-coupling heterostructure with enhanced photocatalytic performance, RSC Adv., 6 (2016) 48599-48609.

DOI: 10.1039/c6ra05166a

Google Scholar

[27] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight, Acs Appl. Mater. Interfaces, 7 (2015).

DOI: 10.1021/acsami.5b05268

Google Scholar

[28] L. Zhu, L. Wang, N. Bing, P. Li, L. Wang, C. Huang, G. Liao, In situ synthesis of N-doped carbon nanotubes–BiOCl nanocomposites and their synergistic photocatalytic performance, RSC Adv., 6 (2016) 2926-2934.

DOI: 10.1039/c5ra24149a

Google Scholar

[29] B.M. Pirzada, N.A. Mir, N. Qutub, O. Mehraj, S. Sabir, M. Muneer, Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Mater. Sci. Eng., B, 193 (2015) 137-145.

DOI: 10.1016/j.mseb.2014.12.005

Google Scholar

[30] F. Shen, L. Zhou, J. Shi, M. Xing, J. Zhang, Preparation and characterization of SiO2/BiOX (X= Cl, Br, I) films with high visible-light activity, RSC Adv., 5 (2015) 4918-4925.

DOI: 10.1039/c4ra10227d

Google Scholar

[31] K.M. Schindler, M. Kunst, Charge-carrier dynamics in titania powders, J. Phys. Chem., 94 (1990) 8222-8226.

DOI: 10.1021/j100384a045

Google Scholar

[32] T. Joana, J. Tom, M. Guido, Experimental evidence for electron localization on Au upon photo- activation of Au/anatase catalysts, Phys. Chem. Chem. Phys., 11 (2009) 2708-2714.

DOI: 10.1039/b820425j

Google Scholar