Microwave Involved Synthesis of Graphene/Polyaniline Nanocomposite with Superior Electrochemical Performance

Article Preview

Abstract:

A microwave irradiation involved process was applied to fabrication of graphene/polyaniline nanocomposite via in-situ polymerization of aniline monomers on graphene sheets. Structure and morphology of composites were characterized through scanning electron microscopy, Raman spectra, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectra. Electrochemical performances for energy storage applications were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements. Owing to the homogeneous coating of polyanilline on the large surface of graphene, graphene/polyaniline composite-based electrode exhibits remarkably enhanced capacitive behavior with a specific capacitance of 429 F/g at 0.2 A g-1, a good cyclic stability and an excellent conducting behavior, which are much superior to those of individual components of composites. The improved electrochemical behavior of the composite resulting from the irradiation of microwave suggests the promising potentials for supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-224

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature. Mater. 6 (2007) 183-191.

Google Scholar

[3] Y. Sun, Q. Wu, G. -Q. Shi, Graphene based new energy materials, Energ. Environ. Sci. 4(2011) 1113-1132.

Google Scholar

[4] L. -B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. -S. Zhao, R.V. Kumar, Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and power lithium sulfur batteries, J. Power Sources 303 (2016) 22-28.

DOI: 10.1016/j.jpowsour.2015.10.097

Google Scholar

[5] S. Zhang, N. Huang, Q. Lu, M. Liu, H. Li, Y. Zhang, S. Yao, A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate, Biosens. Bioelectron. 77 (2016).

DOI: 10.1016/j.bios.2015.10.089

Google Scholar

[6] Q. Zhang, X. -J. Wan, F. Xing, L. Huang, G. -K. Long, Solution-processable graphene mesh transparent electrodes for organic solar cells, Nano. Res. 6 (2013) 478-484.

DOI: 10.1007/s12274-013-0325-7

Google Scholar

[7] H. Qiu, X. Han, F. Qiu, J. Yang, Facile route to covalently-jointed graphene/polyaniline compositeand it's enhanced electrochemical performances for supercapacitor, Appl. Sur. Sci. 376(2016)261-268.

DOI: 10.1016/j.apsusc.2016.03.018

Google Scholar

[8] Y. Meng, K. Wang, Y. -J. Zhang, Z. -X. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors, Adv. Mater. 25 (2013) 6985-6990.

DOI: 10.1002/adma.201303529

Google Scholar

[9] F. Liu, S. Song, D. Xue, H. -J. Zhang, Folded Structured Graphene Paper for High Performance Electrode Materials, Adv. Mater. 24 (2012) 1089-1094.

DOI: 10.1002/adma.201104691

Google Scholar

[10] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[11] D. Li, J. Huang, R.B. Kaner, Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications, Acc. Chem. Res. 42 (2009) 135-145.

DOI: 10.1021/ar800080n

Google Scholar

[12] C. Liu, F. Li, L. -P. Ma, Advanced Materials for Energy Storage, Adv. Mater. 22 (2010) E28-E62.

Google Scholar

[13] L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou, Y. Song, Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors, Sci. Rep. 3 (2013) 1524-1528.

DOI: 10.1038/srep03568

Google Scholar

[14] Q. Wu, Y. Xu, Supercapacitors Based on Flexible Graphene Polyaniline Nanofiber Composite Films, ACS Nano 4 (2010) 1963-(1970).

DOI: 10.1021/nn1000035

Google Scholar

[15] K. Zhang, L. -L. Zhang, X. -S. Zhao, J. -S. Wu, Graphene-polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392-1401.

DOI: 10.1021/cm902876u

Google Scholar

[16] L. Lai, L. Chen, D. Zhan, L. Sun, J. -P. Liu, S.H. Lim, C.K. Poh, Z. -X. Shen, J. -Y. Lin, One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties, Carbon 49 (2011) 3250-3257.

DOI: 10.1016/j.carbon.2011.03.051

Google Scholar

[17] J. -H. Liu, J. -W. An, Y. -C. Zhou, Preparation of an Amide Group-Connected Graphene-Polyaniline Nanofiber Hybrid and Its Application in Supercapacitors, ACS Appl. Mater. Interfaces 4 (2012) 2870-2876.

DOI: 10.1021/am300640y

Google Scholar

[18] L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, Preparation of Supercapacitor Electrodes through Selection of Graphene Surface Functionalities, ACS Nano 6 (2012) 5941-5951.

DOI: 10.1021/nn3008096

Google Scholar

[19] Z. Gao, F. Wang, J. Chang, D. -P. Wu, X. -R. Wang, F. Xu, S. -Y. Gao, K. Jiang, X. Wang, Chemically grafted graphene-polyaniline composite for application in supercapacitor, Electrochim. Acta 133 (2014) 325-334.

DOI: 10.1016/j.electacta.2014.04.033

Google Scholar

[20] M. Darwish, A. Mohammadi, N. Assi, Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine, Mater. Re. Bull. 74 (2016) 387-396.

DOI: 10.1016/j.materresbull.2015.11.002

Google Scholar

[21] X. Li, L. Yang, Y. Lei, L. Gu, D. Xiao, Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor, ACS Appl. Mater. Interfaces 6 (2014) 19978-19989.

DOI: 10.1021/am505533c

Google Scholar

[22] Y. Wang, H. Qiu, Z. Wang, J. Li, X. Shen, J. Yang, Synthesis of SWCNT/GO / MnO2 nanocomposites for use as electrodes of electrochemical capacitors by microwave and hydrothermal methods, New Caron Mater. 3 (2015) 214-221.

DOI: 10.1016/j.carbon.2015.06.045

Google Scholar

[23] Q. Hao, X. -F. Xia, W. Lei, W. Wang, J. -S. Qiu, Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors, Carbon 81 (2015) 552-563.

DOI: 10.1016/j.carbon.2014.09.090

Google Scholar

[24] G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon 43 (2005) 641-649.

DOI: 10.1016/j.carbon.2004.10.035

Google Scholar

[25] H. Mi, J. Zhou, Q. -X. Cui, Z. -B. Zhao, C . Yu, X. -Z. Wang, J. -S. Qiu, Chemically patterned polyaniline arrays located on pyrolytic graphene for supercapacitors, Carbon 80 (2014) 799-807.

DOI: 10.1016/j.carbon.2014.09.036

Google Scholar

[26] Q. Zhou, Y. Li, L. Huang, G. -Q. Shi, Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors, J. Mater. Chem. A 2 (2014) 17489-17494.

DOI: 10.1039/c4ta03639e

Google Scholar

[27] Z. -S. Wu, W. -C. Ren, L. Xu, F. Li, H. -M. Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries, ACS Nano 5 (2011) 5463-5471.

DOI: 10.1021/nn2006249

Google Scholar

[28] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. -Y. Jia, Y. Wu, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[29] M.J. McAllister, J. -L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19 (2007) 4396-4404.

DOI: 10.1021/cm0630800

Google Scholar

[30] E. Song, J.W. Choi, Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing, Nanomater. 3 (2013) 498-523.

DOI: 10.3390/nano3030498

Google Scholar

[31] W. -L. Wu, Y. -F. Li, L. -Q. Yang, Y. -X. Ma, D. Pan, A Facile One-Pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors, Electrochim. Acta 139 (2014) 117-126.

DOI: 10.1016/j.electacta.2014.06.166

Google Scholar

[32] M. -Q. Xue, F. -W. Li, J. Zhu, H. Song, M. -N. Zhan, T. -B. Cao, Structure-Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns, Adv. Funct. Mater. 22 (2012) 1284-1290.

DOI: 10.1002/adfm.201101989

Google Scholar

[33] F. Huang, D. Chen, Towards the upper bound of electrochemical performance of ACNT@polyaniline arrays as supercapacitors, Energ. Environ. Sci. 5 (2012) 5833-5841.

DOI: 10.1039/c1ee01989a

Google Scholar

[34] M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G. -Z. Chen, D.J. Fray, A.H. Windle, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole, Adv. Mater. 14 (2002) 382-385.

DOI: 10.1002/1521-4095(20020304)14:5<382::aid-adma382>3.0.co;2-y

Google Scholar