[1]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[2]
A.K. Geim, K.S. Novoselov, The rise of graphene, Nature. Mater. 6 (2007) 183-191.
Google Scholar
[3]
Y. Sun, Q. Wu, G. -Q. Shi, Graphene based new energy materials, Energ. Environ. Sci. 4(2011) 1113-1132.
Google Scholar
[4]
L. -B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. -S. Zhao, R.V. Kumar, Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and power lithium sulfur batteries, J. Power Sources 303 (2016) 22-28.
DOI: 10.1016/j.jpowsour.2015.10.097
Google Scholar
[5]
S. Zhang, N. Huang, Q. Lu, M. Liu, H. Li, Y. Zhang, S. Yao, A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate, Biosens. Bioelectron. 77 (2016).
DOI: 10.1016/j.bios.2015.10.089
Google Scholar
[6]
Q. Zhang, X. -J. Wan, F. Xing, L. Huang, G. -K. Long, Solution-processable graphene mesh transparent electrodes for organic solar cells, Nano. Res. 6 (2013) 478-484.
DOI: 10.1007/s12274-013-0325-7
Google Scholar
[7]
H. Qiu, X. Han, F. Qiu, J. Yang, Facile route to covalently-jointed graphene/polyaniline compositeand it's enhanced electrochemical performances for supercapacitor, Appl. Sur. Sci. 376(2016)261-268.
DOI: 10.1016/j.apsusc.2016.03.018
Google Scholar
[8]
Y. Meng, K. Wang, Y. -J. Zhang, Z. -X. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors, Adv. Mater. 25 (2013) 6985-6990.
DOI: 10.1002/adma.201303529
Google Scholar
[9]
F. Liu, S. Song, D. Xue, H. -J. Zhang, Folded Structured Graphene Paper for High Performance Electrode Materials, Adv. Mater. 24 (2012) 1089-1094.
DOI: 10.1002/adma.201104691
Google Scholar
[10]
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. 22 (2010) 3906-3924.
DOI: 10.1002/adma.201001068
Google Scholar
[11]
D. Li, J. Huang, R.B. Kaner, Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications, Acc. Chem. Res. 42 (2009) 135-145.
DOI: 10.1021/ar800080n
Google Scholar
[12]
C. Liu, F. Li, L. -P. Ma, Advanced Materials for Energy Storage, Adv. Mater. 22 (2010) E28-E62.
Google Scholar
[13]
L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou, Y. Song, Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors, Sci. Rep. 3 (2013) 1524-1528.
DOI: 10.1038/srep03568
Google Scholar
[14]
Q. Wu, Y. Xu, Supercapacitors Based on Flexible Graphene Polyaniline Nanofiber Composite Films, ACS Nano 4 (2010) 1963-(1970).
DOI: 10.1021/nn1000035
Google Scholar
[15]
K. Zhang, L. -L. Zhang, X. -S. Zhao, J. -S. Wu, Graphene-polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392-1401.
DOI: 10.1021/cm902876u
Google Scholar
[16]
L. Lai, L. Chen, D. Zhan, L. Sun, J. -P. Liu, S.H. Lim, C.K. Poh, Z. -X. Shen, J. -Y. Lin, One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties, Carbon 49 (2011) 3250-3257.
DOI: 10.1016/j.carbon.2011.03.051
Google Scholar
[17]
J. -H. Liu, J. -W. An, Y. -C. Zhou, Preparation of an Amide Group-Connected Graphene-Polyaniline Nanofiber Hybrid and Its Application in Supercapacitors, ACS Appl. Mater. Interfaces 4 (2012) 2870-2876.
DOI: 10.1021/am300640y
Google Scholar
[18]
L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, Preparation of Supercapacitor Electrodes through Selection of Graphene Surface Functionalities, ACS Nano 6 (2012) 5941-5951.
DOI: 10.1021/nn3008096
Google Scholar
[19]
Z. Gao, F. Wang, J. Chang, D. -P. Wu, X. -R. Wang, F. Xu, S. -Y. Gao, K. Jiang, X. Wang, Chemically grafted graphene-polyaniline composite for application in supercapacitor, Electrochim. Acta 133 (2014) 325-334.
DOI: 10.1016/j.electacta.2014.04.033
Google Scholar
[20]
M. Darwish, A. Mohammadi, N. Assi, Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine, Mater. Re. Bull. 74 (2016) 387-396.
DOI: 10.1016/j.materresbull.2015.11.002
Google Scholar
[21]
X. Li, L. Yang, Y. Lei, L. Gu, D. Xiao, Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor, ACS Appl. Mater. Interfaces 6 (2014) 19978-19989.
DOI: 10.1021/am505533c
Google Scholar
[22]
Y. Wang, H. Qiu, Z. Wang, J. Li, X. Shen, J. Yang, Synthesis of SWCNT/GO / MnO2 nanocomposites for use as electrodes of electrochemical capacitors by microwave and hydrothermal methods, New Caron Mater. 3 (2015) 214-221.
DOI: 10.1016/j.carbon.2015.06.045
Google Scholar
[23]
Q. Hao, X. -F. Xia, W. Lei, W. Wang, J. -S. Qiu, Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors, Carbon 81 (2015) 552-563.
DOI: 10.1016/j.carbon.2014.09.090
Google Scholar
[24]
G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon 43 (2005) 641-649.
DOI: 10.1016/j.carbon.2004.10.035
Google Scholar
[25]
H. Mi, J. Zhou, Q. -X. Cui, Z. -B. Zhao, C . Yu, X. -Z. Wang, J. -S. Qiu, Chemically patterned polyaniline arrays located on pyrolytic graphene for supercapacitors, Carbon 80 (2014) 799-807.
DOI: 10.1016/j.carbon.2014.09.036
Google Scholar
[26]
Q. Zhou, Y. Li, L. Huang, G. -Q. Shi, Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors, J. Mater. Chem. A 2 (2014) 17489-17494.
DOI: 10.1039/c4ta03639e
Google Scholar
[27]
Z. -S. Wu, W. -C. Ren, L. Xu, F. Li, H. -M. Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries, ACS Nano 5 (2011) 5463-5471.
DOI: 10.1021/nn2006249
Google Scholar
[28]
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. -Y. Jia, Y. Wu, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
DOI: 10.1016/j.carbon.2007.02.034
Google Scholar
[29]
M.J. McAllister, J. -L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19 (2007) 4396-4404.
DOI: 10.1021/cm0630800
Google Scholar
[30]
E. Song, J.W. Choi, Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing, Nanomater. 3 (2013) 498-523.
DOI: 10.3390/nano3030498
Google Scholar
[31]
W. -L. Wu, Y. -F. Li, L. -Q. Yang, Y. -X. Ma, D. Pan, A Facile One-Pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors, Electrochim. Acta 139 (2014) 117-126.
DOI: 10.1016/j.electacta.2014.06.166
Google Scholar
[32]
M. -Q. Xue, F. -W. Li, J. Zhu, H. Song, M. -N. Zhan, T. -B. Cao, Structure-Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns, Adv. Funct. Mater. 22 (2012) 1284-1290.
DOI: 10.1002/adfm.201101989
Google Scholar
[33]
F. Huang, D. Chen, Towards the upper bound of electrochemical performance of ACNT@polyaniline arrays as supercapacitors, Energ. Environ. Sci. 5 (2012) 5833-5841.
DOI: 10.1039/c1ee01989a
Google Scholar
[34]
M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G. -Z. Chen, D.J. Fray, A.H. Windle, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole, Adv. Mater. 14 (2002) 382-385.
DOI: 10.1002/1521-4095(20020304)14:5<382::aid-adma382>3.0.co;2-y
Google Scholar