[1]
S., Iijima, Helical microtubules of graphitic carbon,. Nature, 354(1991), pp.56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
M. A., Eltaher, & M. A., Agwa, Analysis of Size-dependent Mechanical Properties of CNTs Mass Sensor Using Energy Equivalent Model,. Sensors and Actuators A, 246, (2016), p.9–17.
DOI: 10.1016/j.sna.2016.05.009
Google Scholar
[3]
M. A., Eltaher, S., El-Borgi & J.N., Reddy Nonlinear Analysis of Size-dependent and Material-Dependent Nonlocal CNTs,. Composite Structure, 153, (2016), p.902–913.
DOI: 10.1016/j.compstruct.2016.07.013
Google Scholar
[4]
T., Yamabe, Recent development of carbon nanotube,, Synthetic Metals, 70(1), (1995), pp.1511-1518.
DOI: 10.1016/0379-6779(94)02939-v
Google Scholar
[5]
Y., Wu, X., Zhang, A. Y. T., Leung, & W., Zhong, An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes,, Thin-Walled Structures, 44(6) , (2006), pp.667-676.
DOI: 10.1016/j.tws.2006.05.003
Google Scholar
[6]
V. M., Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models,, Computational materials science, 24(3) , (2002), pp.328-342.
DOI: 10.1016/s0927-0256(01)00255-5
Google Scholar
[7]
L., Nasdala, A., Kempe, & R., Rolfes, Are finite elements appropriate for use in molecular dynamic simulations?,, Composites Science and Technology, 72(9) , (2012), pp.989-1000.
DOI: 10.1016/j.compscitech.2012.03.008
Google Scholar
[8]
C., Li, & T. W., Chou, A structural mechanics approach for the analysis of carbon nanotubes,, International Journal of Solids and Structures, 40(10), (2003), pp.2487-2499.
DOI: 10.1016/s0020-7683(03)00056-8
Google Scholar
[9]
M., Amabili, Non-linear vibrations of doubly curved shallow shells,, International Journal of Non-Linear Mechanics, 40(5), (2005), pp.683-710.
DOI: 10.1016/j.ijnonlinmec.2004.08.007
Google Scholar
[10]
A. Y. T., Leung, X., Guo, X. Q., He, & S. Kitipornchai, A continuum model for zigzag single-walled carbon nanotubes,, Applied Physics Letters, 86(8), (2005), p.083110.
DOI: 10.1063/1.1869543
Google Scholar
[11]
J. Y., Hsieh, J. M., Lu, M. Y., Huang, & C. C., Hwang, Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study,, Nanotechnology, 17(15) , (2006), p.3920.
DOI: 10.1088/0957-4484/17/15/051
Google Scholar
[12]
J., Cai, C. Y., Wang, T., Yu, & S., Yu, Wall thickness of single-walled carbon nanotubes and its Young's modulus,, Physica Scripta, 79(2) , (2009), p.025702.
DOI: 10.1088/0031-8949/79/02/025702
Google Scholar
[13]
M. M., Shokrieh, & R., Rafiee, Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach,, Materials & Design, 31(2), (2010), pp.790-795.
DOI: 10.1016/j.matdes.2009.07.058
Google Scholar
[14]
H. M., Shodja, & M. R., Delfani, A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes,,Acta mechanica, 222(1-2) , (2011), pp.91-101.
DOI: 10.1007/s00707-011-0528-5
Google Scholar
[15]
S. H., Tzeng, & J. L., Tsai, Characterizing the Mechanical Properties of Graphene and Single Walled Carbon Nanotubes,, Journal of Mechanics, 27(4), (2011) , pp.461-467.
DOI: 10.1017/jmech.2011.49
Google Scholar
[16]
U. A., Joshi, S. C., Sharma, & S. P., Harsha, A multiscale approach for estimating the chirality effects in carbon nanotube reinforced composites,, Physica E: Low-dimensional Systems and Nanostructures, 45, (2012), pp.28-35.
DOI: 10.1016/j.physe.2012.06.012
Google Scholar
[17]
M. Q., Le, Prediction of Young's modulus of hexagonal monolayer sheets based on molecular mechanics,, International Journal of Mechanics and Materials in Design, 11(1) , (2015), pp.15-24.
DOI: 10.1007/s10999-014-9271-0
Google Scholar
[18]
G. Q., Han, J. H., Shen, X. X., Ye, B., Chen, Imai, H., Kondoh, K., & Du, W. B., The influence of CNTs on the microstructure and ductility of CNT/Mg composites,, Materials Letters, 181, (2016), pp.300-304.
DOI: 10.1016/j.matlet.2016.06.021
Google Scholar
[19]
M., Mohammadimehr, & S. Alimirzaei, Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM,, Structural Engineering and Mechanics, 59(3), (2016), pp.431-454.
DOI: 10.12989/sem.2016.59.3.431
Google Scholar
[20]
D., Qian, E. C., Dickey, R., Andrews, & T., Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,, Applied physics letters, 76(20), (2000), pp.2868-2870.
DOI: 10.1063/1.126500
Google Scholar
[21]
Z. L., Wang, P., Poncharal, & W. A., De Heer, Nanomeasurements of individual carbon nanotubes by in situ TEM,, Pure and applied chemistry, 72(1-2) , (2000), pp.209-219.
DOI: 10.1351/pac200072010209
Google Scholar
[22]
Y., Mikata, Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube,, Acta Mechanica, 190(1-4), (2007), pp.133-150.
DOI: 10.1007/s00707-006-0402-z
Google Scholar
[23]
F. N., Mayoof, & M. A. Hawwa, Chaotic behavior of a curved carbon nanotube under harmonic excitation,, Chaos, Solitons & Fractals, 42(3), (2009), pp.1860-1867.
DOI: 10.1016/j.chaos.2009.03.104
Google Scholar
[24]
K.,Mezghani, M., Farooqui, S., Furquan, & M., Atieh, Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers,, Materials Letters, 65(23) , (2011), pp.3633-3635.
DOI: 10.1016/j.matlet.2011.08.002
Google Scholar
[25]
B., Wang, Z., Deng, K., Zhang, & J., Zhou, Dynamic analysis of embedded curved double-walled carbon nanotubes based on nonlocal Euler-Bernoulli Beam theory,, Multidiscipline Modeling in Materials and Structures, 8(4), (2012), pp.432-453.
DOI: 10.1108/15736101211281470
Google Scholar
[26]
B.,Wang, Z. C., Deng, & K., Zhang, Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory,, Applied Mathematics and Mechanics, 34, (2013), pp.269-280.
DOI: 10.1007/s10483-013-1669-8
Google Scholar
[27]
C., Thongyothee, & S., Chucheepsakul, Postbuckling behaviors of nanorods including the effects of nonlocal elasticity theory and surface stress,, Journal of Applied Physics, 114(24) , (2013), p.243507.
DOI: 10.1063/1.4829896
Google Scholar
[28]
F., Alijani, & M., Amabili, Theory and experiments for nonlinear vibrations of imperfect rectangular plates with free edges,, Journal of Sound and Vibration, 332(14), (2013), pp.3564-3588.
DOI: 10.1016/j.jsv.2013.02.015
Google Scholar
[29]
H., Mohammadi, M., Mahzoon, M., Mohammadi, & M., Mohammadi, Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation,, Nonlinear Dynamics, 76(4) , (2014), pp.2005-2016.
DOI: 10.1007/s11071-014-1264-x
Google Scholar
[30]
M. E., Khater, M. A., Eltaher, E., Abdel-Rahman, & M., Yavuz, Surface and thermal load effects on the buckling of curved nanowires,, Engineering Science and Technology, an International Journal, 17(4) , (2014), pp.279-283.
DOI: 10.1016/j.jestch.2014.07.003
Google Scholar
[31]
M. A., Eltaher, A. M., Abdraboh, & K. H. Almitani, Resonance frequencies of size dependent perforated nonlocal nanobeam,, Microsystem Technologies, 24, (2018), p.3925–3937.
DOI: 10.1007/s00542-018-3910-6
Google Scholar
[32]
A., Zemri, M. S. A., Houari, A. A., Bousahla, & A.Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory,, Structural Engineering and Mechanics, 54(4), (2015), pp.693-710.
DOI: 10.12989/sem.2015.54.4.693
Google Scholar
[33]
F. L., Chaht, A., Kaci, M. S. A., Houari, Tounsi, O. A., Bég, & S. R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect,, Steel and Composite Structures, 18(2), (2015), pp.425-442.
DOI: 10.12989/scs.2015.18.2.425
Google Scholar
[34]
K. S., Al-Basyouni, A., Tounsi, & S. R. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position,, Composite Structures, 125, (2015), pp.621-630.
DOI: 10.1016/j.compstruct.2014.12.070
Google Scholar
[35]
I., Belkorissat, M. S. A., Houari, A., Tounsi, E. A., Bedia, & S. R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model,, Steel Composite Structure, 18(4), (2015), pp.1063-1081.
DOI: 10.12989/scs.2015.18.4.1063
Google Scholar
[36]
F., Bounouara, K. H., Benrahou, I., Belkorissat, & A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation,, Steel and Composite Structures, 20(2), (2016), pp.227-249.
DOI: 10.12989/scs.2016.20.2.227
Google Scholar
[37]
M., Ahouel, M. S. A., Houari, E. A., Bedia, & A. Tounsi, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept,, Steel and Composite Structures, 20(5), (2016), pp.963-981.
DOI: 10.12989/scs.2016.20.5.963
Google Scholar
[38]
K., Bouafia, A., Kaci, M. S. A., Houari, A., Benzair, & A. Tounsi, A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams,, Smart Structures and Systems, 19(2), (2017), pp.115-126.
DOI: 10.12989/sss.2017.19.2.115
Google Scholar
[39]
A., Mouffoki, E. A., Bedia, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory,, Smart Structures and Systems, 20(3), (2017), 369-383.
Google Scholar
[40]
H., Khetir, M. B., Bouiadjra, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates,, Structural Engineering and Mechanics, 64(4), (2017), pp.391-402.
Google Scholar
[41]
A., Besseghier, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory,, Smart Structures and Systems, 19(6), (2017), pp.601-614.
Google Scholar
[42]
B., Karami, M., Janghorban, & A. Tounsi, Effects of triaxial magnetic field on the anisotropic nanoplates,, Steel and Composite Structures, 25(3), (2017), pp.361-374.
Google Scholar
[43]
A., Bouadi, A. A., Bousahla, M. S. A., Houari, H., Heireche, & A. Tounsi, A new nonlocal HSDT for analysis of stability of single layer graphene sheet,, Advances in Nano Research, 6(2), (2018), pp.147-162.
Google Scholar
[44]
B., Karami, M., Janghorban, & A. Tounsi, Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory,, Thin-Walled Structures, 129, (2018), pp.251-264.
DOI: 10.1016/j.tws.2018.02.025
Google Scholar
[45]
B., Karami, M., Janghorban, & A. Tounsi,, Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles,, Steel and Composite Structures, 27(2), (2018), pp.201-216.
Google Scholar
[46]
H., Baghdadi, A., Tounsi, M., Zidour & A., Benzair, Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory,, Fullerenes, Nanotubes and Carbon Nanostructures, 23(3), (2014), pp.266-272.
DOI: 10.1080/1536383x.2013.787605
Google Scholar
[47]
S., Benguediab, A., Tounsi, M., Zidour, & A., Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes,, Composites Part B: Engineering, 57, (2014), pp.21-24.
DOI: 10.1016/j.compositesb.2013.08.020
Google Scholar
[48]
A., Semmah, A., Tounsi, M., Zidour, H., Heireche, & M., Naceri, Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory,, Fullerenes, Nanotubes and Carbon Nanostructures, 23(6), (2015), pp.518-522.
DOI: 10.1080/1536383x.2012.749457
Google Scholar
[49]
W. A., Bedia, A., Benzair, A., Semmah, A., Tounsi, & S. R., Mahmoud, On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity,, Brazilian Journal of Physics, 45(2), (2015), pp.225-233.
DOI: 10.1007/s13538-015-0306-2
Google Scholar
[50]
A., Besseghier, H., Heireche, Bousahla, A. A., Tounsi, A., & Benzair, A., Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix,, Advances in Nano Research, 3(1), (2015), p.029.
DOI: 10.12989/anr.2015.3.1.029
Google Scholar
[51]
B., Kadari, A., Bessaim, A., Tounsi, H., Heireche, A. A., Bousahla, &, M. S. A., Houari Buckling analysis of orthotropic nanoscale plates resting on elastic foundations,. In Journal of Nano Research, 55, (2018), pp.42-56.
DOI: 10.4028/www.scientific.net/jnanor.55.42
Google Scholar
[52]
R., Hamza-Cherif, M., Meradjah, M., Zidour, A., Tounsi, S., Belmahi, & Bensattalah, T., Vibration analysis of nano beam using differential transform method including thermal effect,, In Journal of Nano Research 54, (2018), pp.1-14.
DOI: 10.4028/www.scientific.net/jnanor.54.1
Google Scholar
[53]
H., Bellifa, K. H., Benrahou, A. A., Bousahla, A., Tounsi, & S. R. Mahmoud, A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams,, Structural Engineering and Mechanics, 62(6), (2017), pp.695-702.
Google Scholar
[54]
A., Kaci, M. S. A., Houari, A. A., Bousahla, A., Tounsi, & S. R. Mahmoud, Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory,, Structural Engineering and Mechanics, 65(5), (2018), pp.621-631.
Google Scholar
[55]
Y., Mokhtar, H., Heireche, A. A., Bousahla, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory,, Smart Structures and Systems, 21(4), (2018), pp.397-405.
Google Scholar
[56]
M., Yazid, H., Heireche, A., Tounsi, A. A., Bousahla, & M. S. A. Houari, A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium,, Smart Structures and Systems, 21(1), (2018), pp.15-25.
DOI: 10.2174/2405461501666161130121643
Google Scholar
[57]
D., Iesan, & R., Quintanilla, Strain gradient theory of chiral Cosserat thermoelasticity without energy dissipation,, Journal of Mathematical Analysis and Applications, 437(2) , (2016), pp.1219-1235.
DOI: 10.1016/j.jmaa.2016.01.058
Google Scholar
[58]
J., Qin, D., Liu, N., Zhao, C., Shi, Liu, E. Z., He, F. ... & He, C., Fabrication of Sn-core/CNT-shell nanocable anchored interconnected carbon networks as anode material for lithium ion batteries,, Materials Letters, 212, (2018), pp.94-97.
DOI: 10.1016/j.matlet.2017.10.011
Google Scholar
[59]
S.A.H., Kordkheili, T., Mousavi, H., Bahai, Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory,, Structural Engineering and Mechanics, 66(5), (2018), pp.621-629.
Google Scholar
[60]
M., Amabili, Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory,, European Journal of Mechanics-A/Solids, 68, (2018), pp.75-87.
DOI: 10.1016/j.euromechsol.2017.11.005
Google Scholar
[61]
N., Mohamed, M. A., Eltaher, S. A., Mohamed, & L. F., Seddek, Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations,, International Journal of Non-Linear Mechanics, 101, (2018), pp.157-173.
DOI: 10.1016/j.ijnonlinmec.2018.02.014
Google Scholar
[62]
S. A., Emam, M. A., Eltaher, M. E., Khater, & W. S., Abdalla, Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams under a Pre-Stress Load,, Applied Sciences, 8(11) , (2018), p.2238.
DOI: 10.3390/app8112238
Google Scholar
[63]
M. A., Eltaher, M., Agwa, & A., Kabeel, Vibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model,, Journal of Applied and Computational Mechanics, 4(2), (2018), pp.75-86.
Google Scholar
[64]
A. K., Rappé, C. J., Casewit, K. S., Colwell, W. A., Goddard Iii, & W. M., Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,, Journal of the American chemical society, 114(25) , (1992), pp.10024-10035.
DOI: 10.1021/ja00051a040
Google Scholar
[65]
R., Bellman, & J., Casti, Differential quadrature and long-term integration,, Journal of Mathematical Analysis and Applications, 34(2) , (1971), pp.235-238.
DOI: 10.1016/0022-247x(71)90110-7
Google Scholar
[66]
C., Shu, & B. E., Richards, Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations,, International Journal for Numerical Methods in Fluids, 15(7), (1992), pp.791-798.
DOI: 10.1002/fld.1650150704
Google Scholar
[67]
A. H., Khater, R. S., Temsah, & M. M., Hassan, A Chebyshev spectral collocation method for solving Burgers'-type equations,, Journal of Computational and Applied Mathematics, 222(2), (2008), pp.333-350.
DOI: 10.1016/j.cam.2007.11.007
Google Scholar
[68]
R. C., Mittal, & R., Jiwari, A differential quadrature method for numerical solutions of Burgers'-type equations,, International Journal of Numerical Methods for Heat & Fluid Flow, 22(7) , (2012), pp.880-895.
DOI: 10.1108/09615531211255761
Google Scholar
[69]
J. R., Quan, & C. T., Chang, New insights in solving distributed system equations by the quadrature method—I. Analysis,. Computers & chemical engineering, 13(7), (1989), pp.779-788.
DOI: 10.1016/0098-1354(89)85051-3
Google Scholar
[70]
A. H., Nayfeh, & S. A., Emam, Exact solution and stability of postbuckling configurations of beams,, Nonlinear Dynamics, 54(4), (2008), pp.395-408.
DOI: 10.1007/s11071-008-9338-2
Google Scholar
[71]
S. A., Emam, A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams,, Composite Structures, 90(2), (2009), pp.247-253.
DOI: 10.1016/j.compstruct.2009.03.020
Google Scholar
[72]
L. S., Srubshchik Precritical equilibrium of a thin shallow shell of revolution and its stability,, Journal of Applied Mathematics and Mechanics, 44(2), (1980), pp.229-235.
DOI: 10.1016/0021-8928(80)90152-5
Google Scholar