A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams

Article Preview

Abstract:

In present paper, a novel two variable shear deformation beam theories are developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending and buckling behaviors of nanobeams by using the nonlocal strain gradient theory. The advantage of this theory relies on its two-unknown displacement field as the Euler-Bernoulli beam theory, and it is capable of accurately capturing shear deformation effects, instead of three as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton’s principle. Analytical solutions for the bending and buckling analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending buckling of nanobeams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory. The results obtained are found to be accurate. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and buckling behaviour of nanobeams, but also comparable with the other shear deformation theories which contain more number of unknowns

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-191

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ekinci, K.L. and Roukes, M.L. (2005), Nanoelectromechanical systems,, Rev. Sci. Instruments, 76(6), 061101.

Google Scholar

[2] Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams,, Steel Compos. Struct., Int. J., 23(3), 339-350.

DOI: 10.12989/scs.2017.23.3.339

Google Scholar

[3] Houari, M.S.A., Bessaim, A,. Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter,, Steel Compos. Struct., Int. J., 28(1), 13-24.

Google Scholar

[4] Eringen, A.C. (1972), Nonlocal polar elastic continua,, Int. J. Eng. Sci., 10(1), 1-16.

Google Scholar

[5] Eringen, A.C. (1983), On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,, J. Appl. Phys., 54(9), 4703-4710.

DOI: 10.1063/1.332803

Google Scholar

[6] Mindlin, R.D. (1964), Micro-structure in linear elasticity,, Arch. Rational Mech. Anal., 16(1), 51-78.

DOI: 10.1007/bf00248490

Google Scholar

[7] Mindlin, R.D. (1965), Second gradient of strain and surface-tension in linear elasticity,, Int. J. Solids Struct., 1(4), 417-438.

DOI: 10.1016/0020-7683(65)90006-5

Google Scholar

[8] Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), Bending and stability analysis of gradient elastic beams,, Int. J. Solids Struct., 40(2), 385-400.

DOI: 10.1016/s0020-7683(02)00522-x

Google Scholar

[9] Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), Couple stress based strain gradient theory for elasticity,, Int. J. Solids Struct., 39(10), 2731-2743.

DOI: 10.1016/s0020-7683(02)00152-x

Google Scholar

[10] Askes, H. and Aifantis, E.C. (2009), Gradient elasticity and flexural wave dispersion in carbon nanotubes,, Phys. Rev. B, 80(19), 195412.

DOI: 10.1103/physrevb.80.195412

Google Scholar

[11] Wang, Q. (2005), Wave propagation in carbon nanotubes via nonlocal continuum mechanics,, Journal of Applied physics, 98(12), 124301.

DOI: 10.1063/1.2141648

Google Scholar

[12] Reddy, J. N. (2007), Nonlocal theories for bending, buckling and vibration of beams,, International Journal of Engineering Science, 45(2-8), 288-307.

DOI: 10.1016/j.ijengsci.2007.04.004

Google Scholar

[13] Pradhan, S.C. and Murmu, T. (2010), Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever,, Physica E: Low-dimensional Syst. Nanostruct., 42(7), 1944-1949.

DOI: 10.1016/j.physe.2010.03.004

Google Scholar

[14] Civalek, Ö., Demir, Ç. and Akgöz, B. (2010), Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model,, Math. Comput. Appl., 15(2), 289-298.

DOI: 10.3390/mca15020289

Google Scholar

[15] Tounsi, A., Benguediab, S., Adda, B., Semmah, A., and Zidour, M. (2013), Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes,, Advances in nano research., 1(1), 1-11.

DOI: 10.12989/anr.2013.1.1.001

Google Scholar

[16] Benguediab, S., Semmah, A., Chaht, F. L., Mouaz, S. and Tounsi, A. (2014), An investigation on the characteristics of bending, buckling and vibration of nanobeams via nonlocal beam theory,, International Journal of Computational Methods., 11(06), 1350085.

DOI: 10.1142/s0219876213500850

Google Scholar

[17] Besseghier, A., Heireche, H., Bousahla, A. A., Tounsi, A., and Benzair, A. (2015), Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix,, Advances in nano research., 3(1), 29-37.

DOI: 10.12989/anr.2015.3.1.029

Google Scholar

[18] Bensaid, I. (2017). A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams. ADVANCES IN NANO RESEARCH, 5(2), 113-126.

Google Scholar

[19] Ehyaei, J., Akbarshahi, A., & Shafiei, N. (2017). Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam. ADVANCES IN NANO RESEARCH, 5(2), 141-169.

Google Scholar

[20] Ehyaei, J., & Daman, M. (2017). Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection. ADVANCES IN NANO RESEARCH, 5(2), 179-192.

Google Scholar

[21] Kumar, B. R. (2018). Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces. ADVANCES IN NANO RESEARCH, 6(2), 135-145.

Google Scholar

[22] Eltaher, M. A., Samir A. Emam, and F. F. Mahmoud. Static and stability analysis of nonlocal functionally graded nanobeams., Composite Structures 96 (2013): 82-88.

DOI: 10.1016/j.compstruct.2012.09.030

Google Scholar

[23] Eltaher, M. A., Khater, M. E., &Emam, S. A. (2016). A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling, 40(5-6), 4109-4128.

DOI: 10.1016/j.apm.2015.11.026

Google Scholar

[24] Thai, Huu-Tai, et al. A review of continuum mechanics models for size-dependent analysis of beams and plates., Composite Structures 177 (2017): 196-219.

DOI: 10.1016/j.compstruct.2017.06.040

Google Scholar

[25] Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E., & Meletis, E. I. (2012). Static analysis of nanobeams including surface effects by nonlocal finite element. Journal of Mechanical Science and Technology, 26(11), 3555-3563.

DOI: 10.1007/s12206-012-0871-z

Google Scholar

[26] Eltaher, M. A., Khairy, A., Sadoun, A. M., & Omar, F. A. (2014a). Static and buckling analysis of functionally graded Timoshenko nanobeams. Applied Mathematics and Computation, 229, 283-295.

DOI: 10.1016/j.amc.2013.12.072

Google Scholar

[27] Eltaher, M. A., Hamed, M. A., Sadoun, A. M., & Mansour, A. (2014b). Mechanical analysis of higher order gradient nanobeams. Applied Mathematics and Computation, 229, 260-272.

DOI: 10.1016/j.amc.2013.12.076

Google Scholar

[28] Alshorbagy, A. E., Eltaher, M. A., & Mahmoud, F. F. (2013). Static analysis of nanobeams using nonlocal FEM. Journal of Mechanical Science and Technology, 27(7), 2035-2041.

DOI: 10.1007/s12206-013-0212-x

Google Scholar

[29] Khater, M. E., Eltaher, M. A., Abdel-Rahman, E., &Yavuz, M. (2014). Surface and thermal load effects on the buckling of curved nanowires. Engineering Science and Technology, an International Journal, 17(4), 279-283.

DOI: 10.1016/j.jestch.2014.07.003

Google Scholar

[30] K., Bouafia, A., Kaci, M.S.A., Houri, A.Benzair, and A.Tounsi, A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams, Smart Struct. Syst., 19(2), (2017), 115-126.

DOI: 10.12989/sss.2017.19.2.115

Google Scholar

[31] Eltaher, M. A., Kabeel, A. M., Almitani, K. H., &Abdraboh, A. M. (2018a). Static bending and buckling of perforated nonlocal size-dependent nanobeams. Microsystem Technologies, 24 (12), 4881-4893.

DOI: 10.1007/s00542-018-3905-3

Google Scholar

[32] Eltaher, M. A., Omar, F. A., Abdalla, W. S., & Gad, E. H. (2018b). Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity. Waves in Random and Complex Media, 1-17.

DOI: 10.1080/17455030.2018.1429693

Google Scholar

[33] Eltaher, M. A., Fouda, N., El-midany, T., &Sadoun, A. M. (2018c). Modified porosity model in analysis of functionally graded porous nanobeams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3), 141.

DOI: 10.1007/s40430-018-1065-0

Google Scholar

[34] Emam, S., Eltaher, M., Khater, M., &Abdalla, W. (2018). Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams under a Pre-Stress Load. Applied Sciences, 8(11), 2238.

DOI: 10.3390/app8112238

Google Scholar

[35] Karami, B., Janghorban, M., Tounsi, A. (2018a), Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles,, Steel and Composite Structures, 27(2), 201-216.

Google Scholar

[36] Karami, B., Janghorban, M., Tounsi, A. (2018b), Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory,, Thin-Walled Structures, 129, 251–264.

DOI: 10.1016/j.tws.2018.02.025

Google Scholar

[37] Ebrahimi, F., Barati, M. R. and Dabbagh, A. (2016a), A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates,, International Journal of Engineering Science., 107, 169-182.

DOI: 10.1016/j.ijengsci.2016.07.008

Google Scholar

[38] Fleck, N. A. and Hutchinson, J. W. (1993), A phenomenological theory for strain gradient effects in plasticity,, Journal of the Mechanics and Physics of Solids., 41(12), 1825-1857.

DOI: 10.1016/0022-5096(93)90072-n

Google Scholar

[39] Lam, D. C., Yang, F., Chong, A. C. M., Wang, J. and Tong, P. (2003), Experiments and theory in strain gradient elasticity,, Journal of the Mechanics and Physics of Solids., 51(8), 1477-1508.

DOI: 10.1016/s0022-5096(03)00053-x

Google Scholar

[40] Stölken, J. S. and Evans, A. G. (1998), A microbend test method for measuring the plasticity length scale,, Acta Materialia., 46(14), 5109-5115.

DOI: 10.1016/s1359-6454(98)00153-0

Google Scholar

[41] Ebrahimi, F., Barati, M. R. and Dabbagh, A. (2016b), A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates,, International Journal of Engineering Science., 107, 169-182.

DOI: 10.1016/j.ijengsci.2016.07.008

Google Scholar

[42] Reddy, J. N. (2011), Microstructure-dependent couple stress theories of functionally graded beams,, Journal of the Mechanics and Physics of Solids., 59(11), 2382-2399.

DOI: 10.1016/j.jmps.2011.06.008

Google Scholar

[43] Akgöz, B. and Civalek, Ö. (2014), Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium,, International Journal of Engineering Science., 85, 90-104.

DOI: 10.1016/j.ijengsci.2014.08.011

Google Scholar

[44] Li, Y. S., Feng, W. J. and Cai, Z. Y. (2014), Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory,, Composite Structures., 115, 41-50.

DOI: 10.1016/j.compstruct.2014.04.005

Google Scholar

[45] Mohammadimehr, M., Farahi, M. J. and Alimirzaei, S. (2016), Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory,, Applied Mathematics and Mechanics., 37(10), 1375-1392.

DOI: 10.1007/s10483-016-2138-9

Google Scholar

[46] Lim, C. W., Zhang, G. and Reddy, J. N. (2015), A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,, Journal of the Mechanics and Physics of Solids., 78, 298-313.

DOI: 10.1016/j.jmps.2015.02.001

Google Scholar

[47] Li, L., Hu, Y. and Ling, L. (2015), Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory,, Composite Structures., 133, 1079-1092.

DOI: 10.1016/j.compstruct.2015.08.014

Google Scholar

[48] Li, L., Li, X. and Hu, Y. (2016), Free vibration analysis of nonlocal strain gradient beams made of functionally graded material,, International Journal of Engineering Science., 102, 77-92.

DOI: 10.1016/j.ijengsci.2016.02.010

Google Scholar

[49] Xu, X. J., Wang, X. C., Zheng, M. L. and Ma, Z. (2017), Bending and buckling of nonlocal strain gradient elastic beams,, Composite Structures., 160, 366-377.

DOI: 10.1016/j.compstruct.2016.10.038

Google Scholar

[50] Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory,, Composite Structures., 165, 250-265.

DOI: 10.1016/j.compstruct.2017.01.032

Google Scholar

[51] Sahmani, S., Aghdam, M. M. and Rabczuk, T. (2018), Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory,, Composite Structures., 186, 68-78.

DOI: 10.1016/j.compstruct.2017.11.082

Google Scholar

[52] Ghugal, Y. M. and Shimpi, R. P. (2001), A review of refined shear deformation theories for isotropic and anisotropic laminated beams,, Journal of reinforced plastics and composites., 20(3), 255-272.

DOI: 10.1177/073168401772678283

Google Scholar

[53] Castellazzi, G., Krysl, P. and Bartoli, I. (2013), A displacement-based finite element formulation for the analysis of laminated composite plates,, Composite Structures., 95, 518-527.

DOI: 10.1016/j.compstruct.2012.08.029

Google Scholar

[54] Reddy, J. N. (1984), A simple higher-order theory for laminated composite plates,, Journal of applied mechanics., 51(4), 745-752.

DOI: 10.1115/1.3167719

Google Scholar

[55] Soldatos, K. P. (1992), A transverse shear deformation theory for homogeneous monoclinic plates,, Acta Mechanica., 94(3-4), 195-220.

DOI: 10.1007/bf01176650

Google Scholar

[56] Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. (2014), New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates,, Journal of Engineering Mechanics., 140(2), 374-383.

DOI: 10.1061/(asce)em.1943-7889.0000665

Google Scholar

[57] Houari, M. S. A., Tounsi, A., Bessaim, A. and Mahmoud, S. R. (2016), A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates,, Steel and Composite Structures., 22(2), 257-276.

DOI: 10.12989/scs.2016.22.2.257

Google Scholar

[58] Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory,, International Journal of Engineering Science., 72, 36-52.

DOI: 10.1016/j.ijengsci.2013.06.012

Google Scholar

[59] Mohammad-Abadi, M. and Daneshmehr, A. R. (2014), Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions,, International Journal of Engineering Science., 74, 1-14.

DOI: 10.1016/j.ijengsci.2013.08.010

Google Scholar

[60] Kolahchi, R. and Bidgoli, A. M. (2016), Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes,, Applied Mathematics and Mechanics., 37(2), 265-274.

DOI: 10.1007/s10483-016-2030-8

Google Scholar

[61] Refaeinejad, V., Rahmani, O. and Hosseini, S. A. H. (2017), Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures,, Mechanics of Advanced Materials and Structures., 24(13), 1116-1123.

DOI: 10.1080/15376494.2016.1227496

Google Scholar

[62] Ebrahimi, F. and Barati, M. R. (2018), Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment,, Journal of Vibration and Control., 24(3), 549-564.

DOI: 10.1177/1077546316646239

Google Scholar

[63] Arefi, M., Pourjamshidian, M. and Arani, A. G. (2017), Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment,, Applied Physics A., 123(5), 323.

DOI: 10.1007/s00339-017-0922-5

Google Scholar

[64] Lu, L., Guo, X. and Zhao, J. (2017a), A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms,, International Journal of Engineering Science., 119, 265-277.

DOI: 10.1016/j.ijengsci.2017.06.024

Google Scholar

[65] Lu, L., Guo, X. and Zhao, J. (2017b), Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory,, International Journal of Engineering Science., 116, 12-24.

DOI: 10.1016/j.ijengsci.2017.03.006

Google Scholar

[66] Aifantis, E. C. (1992), On the role of gradients in the localization of deformation and fracture,, International Journal of Engineering Science., 30(10), 1279-1299.

DOI: 10.1016/0020-7225(92)90141-3

Google Scholar

[67] Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A., Tounsi, A. (2018), Dynamic analysis of nanoscale beams including surface stress effects,, Smart Structures and Systems., 21(1), 65-74.

Google Scholar

[68] Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A., Mahmoud, S.R. (2018), Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates,, Geomechanics and Engineering, 14(6), 519-532.

DOI: 10.1016/j.compositesb.2018.09.051

Google Scholar

[69] Bourada M, Kaci A, Houari MS, Tounsi A. A new simple shear and normal deformations theory for functionally graded beams. Steel and composite structures. 2015;18(2):409-23.

DOI: 10.12989/scs.2015.18.2.409

Google Scholar

[70] Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H., Bensattalah, T. (2018), Vibration analysis of nano beam using differential transform method including thermal effect,, Journal of Nano Research, 54, 1-14.

DOI: 10.4028/www.scientific.net/jnanor.54.1

Google Scholar

[71] Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation,, Steel Compos. Struct., 20(2), 227-249.

DOI: 10.12989/scs.2016.20.2.227

Google Scholar

[72] Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2018), Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation,, Wind and Structures, 27(5), 311-324.

Google Scholar