Dependence of Tetrahedral Bond Lengths on the Surface Passivation and Stacking-Fault Density of CdSe Nanocrystals

Article Preview

Abstract:

We have investigated the surface effect of colloidally prepared CdSe nanocrystals (NCs) with the size range of 23-40 Å on their structural properties by changing the organic capping ligands. The TOPO/HDA-passivated NCs reveal a size-dependent behavior involving an elongated axial bond R(1) of an atomic tetrahedron and a shrunken equatorial bonds R(2). After treatment of the NCs with pyridine, the bond length R(1) decreases significantly whereas R(2) remains unchanged relative to the TOPO/HDA-passivated NCs, suggesting that a tensile stress along the [001] direction is contributed from the surface modification. In addition, we find that the expansion ratio of the pyridine-treated NCs along the c axis depends strongly on the density of stacking faults, which provides an evidence for the relaxation of atomic positions near the interface of stacking faults.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-67

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Schlamp, X. G. Peng, A. P. Alivisatos, J. Appl. Phys. 82 (1997) 5837.

Google Scholar

[2] H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, M. F. Rubner, J. Appl. Phys. 83 (1998) 7965.

Google Scholar

[3] M. J. Bowers, J. R. McBride, S. J. Rosenthal, J. Am. Chem. Soc. 127 (2005) 15378.

Google Scholar

[4] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 281 (1998) (2013).

Google Scholar

[5] W. C. W. Chan and S. M. Nie, Science 281 (1998) (2016).

Google Scholar

[6] Y. Champion, F. Bernard, N. Millot, P. Perriat, Appl. Phys. Lett. 86 (2005) 231914.

DOI: 10.1063/1.1947887

Google Scholar

[7] R. W. Meulenberg, T. Jennings, G. F. Strouse, Phys. Rev. B 70 (2004) 235311.

Google Scholar

[8] A. Marbeuf, M. Barbe, A. Ramos, C. Levelut, S. Wszolek, Acta Cryst. B50 (1994) 326.

Google Scholar

[9] K. Suzuki, M. Ichihara, S. Takeuchi, Jpn. J. Appl. Phys. 33 (1994) 1114.

Google Scholar

[10] P. J. Wu, Y. P. Stetsko, K. D. Tsuei, R. Dronyak, K. S. Liang, Appl. Phys. Lett. 90 (2007) 161911.

DOI: 10.1063/1.2727559

Google Scholar

[11] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.

Google Scholar

[12] P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2 (2002) 781.

Google Scholar

[13] E. A. Stern, M. Newville, B. Ravel, D. Haskel, Physica B 208-209 (1995) 117.

Google Scholar

[14] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B 52 (1995) 2995.

Google Scholar

[15] A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, Freeman, San Francisco, 1963, p.49–51.

DOI: 10.1126/science.142.3599.1564

Google Scholar

[16] M. G. Bawendi, A. R. Kortan, M. L. Steigerwald, L. E. Brus, J. Chem. Phys. 91 (1989) 7282.

Google Scholar

[17] C. Kumpf, R. B. Neder, F. Niederdraenk, P. Luczak, A. Stahl, M. Scheuermann, S. Joshi, S. K. Kulkarni, C. Barglik-Chory, C. Heske, E. Umbach, J. Chem. Phys. 123 (2005) 224707.

DOI: 10.1063/1.2129369

Google Scholar

[18] A. C. Carter, C. E. Bouldin, K. M. Kemmer, M. I. Bell, J. C. Woicik, S. A. Majetich, Phys. Rev. B 55 (1997) 13822.

Google Scholar

[19] B. Gilbert, H. Zhang, F. Huang, J. F. Banfield, Y. Ren, D. Haskel, J. C. Lang, G. Srajer, A. Jürgensen, G. A. Waychunas, J. Chem. Phys. 120 (2004) 11785.

DOI: 10.1063/1.1752890

Google Scholar

[20] C. Y. Yeh, Z. W. Lu, S. Froyen, A. Zunger, Phys. Rev. B 46 (1992) 10086.

Google Scholar

[21] P. Perriat, J. C. Niepce, High Temp. Chem. Processes 3 (1994) 585.

Google Scholar

[22] S. Banerjee, S. Jia, D. I. Kim, R. D. Robinson, J. W. Kysar, J. Bevk, I. P. Herman, Nano Lett. 6 (2006) 175.

Google Scholar

[23] B. S. Kim, M. A. Islam, L. E. Brus, I. P. Herman, J. Appl. Phys. 89 (2001) 8127.

Google Scholar

[24] J. A. Majewski, P. Vogl, MRS Internet J. Nitride Semicond. Res. 3 (1998) 21.

Google Scholar

[25] R. P. Reed, R. E. Schramm, J. Appl. Phys. 45 (1974) 4705.

Google Scholar

[26] J. A. Chisholm, P. D. Bristowe, J. Phys.: Condens. Matter, 11 (1999) 5057.

Google Scholar