A Novel Approach to Unzipped Tubes Synthesis Using Sulfanilic Acid as the Backbone Amino Acid

Article Preview

Abstract:

In this research, unzipped sulfanilic acid inspired hydrophobic peptide tube was synthesis by increasing the polarity of sulfanilic acid through nucleophilic attachment of aniline which then provided two reactive sites at the S-terminus. These two sites were then attached with the N-terminal of valine and alanine respectively at an intensity of 1000-1600 of 11 2θ (°). Through π- π stacking at the side chains, the opened ended peptide was linearly arranged to form the unzipped tube. Fourier transform infrared spectroscopy (FTIR) confirm the amine bond formation whiles X-ray diffraction test results confirmed D-spacing 7.36 and 4.44 corresponding 2θ (°)12 and 19.97 respectively whiles the torsion angles (Ø2) conformations was between-150.5°and-169.2° and-2 between-129.0° and-150.6°. The Thermogravimetric analysis result showed an increase in the rigidity of the bond with an increasing intensity. Finally, Differential scanning calorimetry (DSC) test was carried out to confirm the crystallinity of the structure. Keywords: Sulfanilic acid, hydrophobic Peptide, Unzipped tubes, Nanomaterial

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-30

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cheng, S.-S., et al., Synthesis, crystal structure, spectroscopic properties and potential anti-cancerous activities of four unsaturated bis-norcantharimides. Journal of Molecular Structure, 2016. 1115: pp.228-240.

DOI: 10.1016/j.molstruc.2016.02.093

Google Scholar

[2] Rossetti, I. and M. Compagnoni, Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry. Chemical Engineering Journal, 2016. 296: pp.56-70.

DOI: 10.1016/j.cej.2016.02.119

Google Scholar

[3] Seth, S.K., et al., Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states. Journal of Molecular Structure, 2013. 1048: pp.157-165.

DOI: 10.1016/j.molstruc.2013.05.048

Google Scholar

[4] Weiss Iv, W.F., T.M. Young, and C.J. Roberts, Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. Journal of Pharmaceutical Sciences, 2009. 98(4): pp.1246-1277.

DOI: 10.1002/jps.21521

Google Scholar

[5] Görbitz, C.H., Peptide structures. Current Opinion in Solid State and Materials Science, 2002. 6(2): pp.109-116.

DOI: 10.1016/s1359-0286(02)00044-x

Google Scholar

[6] Piela, L., Chapter 13 - Intermolecular Interactions, in Ideas of Quantum Chemistry (Second Edition). 2014, Elsevier: Oxford. pp.793-882.

DOI: 10.1016/b978-0-444-59436-5.00013-1

Google Scholar

[7] Banik, R., et al., Supramolecular interactions through lone pair(lp)–π and hydrogen bonding in cobalt(III) and manganese(II) derivatives of N,N'-dimethylvioluric acid: A combined experimental and theoretical study. Inorganica Chimica Acta, 2015. 435: pp.178-186.

DOI: 10.1016/j.ica.2015.06.018

Google Scholar

[8] Brewer, G., et al., Synthesis, structure and supramolecular features of homonuclear iron(III) and heteronuclear iron(III)–cobalt(III) complexes, [FeH3L][ML](ClO4)3 (M = Fe(III) or Co(III). 2D sheet and tetrahedral arrays. Inorganica Chimica Acta, 2014. 421: pp.100-109.

DOI: 10.1016/j.ica.2014.05.034

Google Scholar

[9] Brewer, G., et al., Synthesis, structure and supramolecular features of cobalt(III) and cobalt(II) complexes, [CoHxL](ClO4)y (x = y = 3, 2, 1.50, 1.45, 1 and 0 and x = 3, y = 2) of a triprotic imidazole containing Schiff base ligand. Effect of protonation state on supramolecular structure. Inorganica Chimica Acta, 2014. 410: pp.94-105.

DOI: 10.1016/j.ica.2013.10.017

Google Scholar

[10] Liu, W., et al., Helix Packing Moments Reveal Diversity and Conservation in Membrane Protein Structure. Journal of Molecular Biology, 2004. 337(3): pp.713-729.

DOI: 10.1016/j.jmb.2004.02.001

Google Scholar

[11] Zong, C., Packing, covering and tiling in two-dimensional spaces. Expositiones Mathematicae, 2014. 32(4): pp.297-364.

DOI: 10.1016/j.exmath.2013.12.002

Google Scholar

[12] Zhao, N., et al., Syntheses, structures and third-order nonlinear optical properties of three coordination polymers based on bis(imidazol-l-yl-methyl)benzene and aromatic dicarboxylic ligands. Polyhedron, 2015. 85: pp.607-614.

DOI: 10.1016/j.poly.2014.09.021

Google Scholar

[13] Mumbaraddi, D., S. Sarkar, and S.C. Peter, A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds. Journal of Solid State Chemistry, 2016. 236: pp.94-115.

DOI: 10.1016/j.jssc.2015.10.032

Google Scholar

[14] An, B., Y.-S. Lin, and B. Brodsky, Collagen interactions: Drug design and delivery. Advanced Drug Delivery Reviews, 2016. 97: pp.69-84.

DOI: 10.1016/j.addr.2015.11.013

Google Scholar

[15] Dass, C., 9.12 - Mass Spectrometry: Structure Determination of Proteins and Peptides, in Comprehensive Natural Products II. 2010, Elsevier: Oxford. pp.457-496.

DOI: 10.1016/b978-008045382-8.00685-7

Google Scholar

[16] Narh, C., et al., Sulfanilic acid inspired self-assembled fibrous materials. Colloid and Polymer Science, 2016. 294(9): pp.1483-1494.

DOI: 10.1007/s00396-016-3911-x

Google Scholar

[17] Armstrong, A., J.E.K. Hildreth, and L.M. Amzel, Structural and Thermodynamic Insights into the Recognition of Native Proteins by Anti-Peptide Antibodies. Journal of Molecular Biology, 2013. 425(11): pp.2027-2038.

DOI: 10.1016/j.jmb.2013.02.031

Google Scholar

[18] Hedwig, G.R. and H. Høiland, Thermodynamic properties of peptide solutions 20. Partial molar volumes and isothermal compressions for some tripeptides of sequence gly-X-gly (X = gly, ala, leu, asn, thr, and tyr) in aqueous solution at T = 298.15 K and p = (10–120) MPa. The Journal of Chemical Thermodynamics, 2016. 99: pp.30-39.

DOI: 10.1016/j.jct.2016.03.032

Google Scholar

[19] Charaschanya, M., et al., Nucleophilic aromatic substitution of heterocycles using a high-temperature and high-pressure flow reactor. Tetrahedron Letters, 2016. 57(9): pp.1035-1039.

DOI: 10.1016/j.tetlet.2016.01.080

Google Scholar

[20] Leushina, E., et al., SNAr nucleophilic substitution of 1,9-dihalodipyrrins by S- and N- nucleophiles. Synthesis of new dipyrrins bearing pendant substituents. Dyes and Pigments, 2016. 129: pp.149-155.

DOI: 10.1016/j.dyepig.2016.02.018

Google Scholar

[21] Ren, Y., J. Yang, and S. Chen, The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge. Chemosphere, 2015. 141: pp.13-18.

DOI: 10.1016/j.chemosphere.2015.05.098

Google Scholar

[22] Pereira, R., et al., Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions. Water Research, 2011. 45(1): pp.191-200.

DOI: 10.1016/j.watres.2010.08.027

Google Scholar

[23] Gonzalez-Silva, B.M., et al., Nitrification at different salinities: Biofilm community composition and physiological plasticity. Water Research, 2016. 95: pp.48-58.

DOI: 10.1016/j.watres.2016.02.050

Google Scholar

[24] Kim, Y.M., H. Park, and K. Chandran, Nitrification inhibition by hexavalent chromium Cr(VI) – Microbial ecology, gene expression and off-gas emissions. Water Research, 2016. 92: pp.254-261.

DOI: 10.1016/j.watres.2016.01.042

Google Scholar

[25] Baran, J., A.J. Barnes, and H. Ratajczak, The polarized IR and Raman spectra of the diglycine hydrochloride crystal. Journal of Molecular Structure, 2012. 1009: pp.55-68.

DOI: 10.1016/j.molstruc.2011.09.016

Google Scholar

[26] Baran, J.A., M.A. Drozd, and H. Ratajczak, Polarised IR and Raman spectra of monoglycine nitrate single crystal. Journal of Molecular Structure, 2010. 976(1–3): pp.226-242.

DOI: 10.1016/j.molstruc.2010.03.055

Google Scholar

[27] Canè, E., et al., Infrared spectroscopy of 15ND3: The ν2 and ν4 bending fundamental bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013. 119: pp.1-11.

DOI: 10.1016/j.jqsrt.2013.01.019

Google Scholar

[28] Cao, C.-T., Y. Bi, and C. Cao, Effects of single bond-ion and single bond-diradical form on the stretching vibration of CN bridging bond in 4,4'-disubstituted benzylidene anilines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016. 163: pp.96-101.

DOI: 10.1016/j.saa.2016.03.021

Google Scholar

[29] Tursun, M. and C. Parlak, Conformation stability, halogen and solvent effects on CO stretching of 4-chloro-3-halogenobenzaldehydes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 141: pp.58-63.

DOI: 10.1016/j.saa.2015.01.023

Google Scholar

[30] Gorbitz, C.H., Nanotube formation by hydrophobic dipeptides. Chemistry-a European Journal, 2001. 7(23): pp.5153-5159.

Google Scholar

[31] Yeap, G.-Y., et al., Molecular structure–thermal behaviour relationship of dimers consisting of different terminal substituents and sulphur–sulphur linking group. Journal of Molecular Structure, 2014. 1074: pp.666-672.

DOI: 10.1016/j.molstruc.2014.03.071

Google Scholar