The Conditions of Formation of the Uniform-Sized Quantum Dots in the Field of an Ultrasonic Wave

Article Preview

Abstract:

The non-linear diffusion-deformation theory of self-organization of nanoclusters of dot defects in semiconductor exposed to ultrasound treatment that considers the interaction of defects among themselves and with atoms of a matrix via the elastic field created by dot defects and an acoustic wave is developed. Within this theory the influence of ultrasound on the conditions of formation of spherical nanoclusters and their radius is investigated. The nanocluster size depending on average concentration of defects and amplitude of an acoustic wave is determined. It is established that ultrasonic treatment of the semiconductor in the process of formation of an ensemble of nanoclusters leads to reduction of dispersion of their sizes. In the framework of this model, a possibility of the ultrasound-stimulated the size dispersion reduction of strained InAs/GaAs quantum dots doped with an isovalent impurity are analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-50

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Zinovyev, A.V. Dvurechenskii, P.A. Kuchinskaya, V.A. Armbrister, S.A. Teys, A.A. Shklyaev and A.V. Mudryi, Nucleation and growth of ordered groups of SiGe quantum dots, Semiconductors 49 (2015) 149 – 153.

DOI: 10.1134/s1063782615020256

Google Scholar

[2] V.I. Conrad, A.D. Greentree and L.C.L. Hollenberg, Multiplexing single electron transistors for application in scalable solid-state quantum computing, Appl. Phys. Lett. 90 (2007) 043109.

DOI: 10.1063/1.2435335

Google Scholar

[3] J.O. Kim, S. Sengupta, A.V. Barve, Y.D. Sharma, S. Adhikary, S.J. Lee et al, Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors, Appl. Phys. Lett. 102 (2013) 011131.

DOI: 10.1063/1.4774383

Google Scholar

[4] E. Sadeghi, Optical nutation in multilayered ellipsoidal quantum dots, Phys. E: Low-dimen. syst. and nanostr. 73 (2015) 1 – 6.

DOI: 10.1016/j.physe.2015.05.015

Google Scholar

[5] T. Kawazu, Optical anisotropy of InGaAs quantum dot arrays aligned along multiatomic steps on vicinal GaAs(111)B, Journal of Applied Physics 122 (2017) 204304.

DOI: 10.1063/1.4996058

Google Scholar

[6] Y. Huang, Y. Puttisong, I.A. Buyanova, W.M. Chen, Understanding and optimizing spin injection in self-assembled InAs/GaAs quantum-dot molecular structures, Nano Research 9 (2016) 602 – 611.

DOI: 10.1007/s12274-015-0940-6

Google Scholar

[7] R.M. Peleshchak, S.K. Guba, O.V. Kuzyk, I.V. Kurilo, O.O. Dan'kiv, Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices, Semiconductors 47 (2013) 349 – 353.

DOI: 10.1134/s1063782613030196

Google Scholar

[8] V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov, Kinetics of the initial stage of coherent island formation in heteroepitaxial systems, Physical Review B 68 (2003) 075409.

DOI: 10.1103/physrevb.68.075409

Google Scholar

[9] J.R. Gell, M.B. Ward, R.J. Young, R.M. Stevenson, P. Atkinson, D. Anderson, G.A.C. Jones, D.A. Ritchie, A.J. Shields, Modulation of single quantum dot energy levels by a surface-acoustic-wave, Applied Physics Letters 93 (2008) 081115.

DOI: 10.1063/1.2976135

Google Scholar

[10] R.M. Peleshchak, O.V. Kuzyk, O.O. Dan'kiv, Temperature regimes of formation of nanometer periodic structure of adsorbed atoms in GaAs semiconductors under the action of laser irradiation, Cond. Mat. Phys. 18 (2015) 43801.

DOI: 10.5488/cmp.18.43801

Google Scholar

[11] W. Yang, B. Zhang, N. Ding, W. Ding, L. Wang, M. Yu, Q. Zhang, Fast synthesize ZnO quantum dots via ultrasonic method, Ultrasonics Sonochemistry 30 (2016) 103 – 112.

DOI: 10.1016/j.ultsonch.2015.11.015

Google Scholar

[12] B.N. Zvonkov, I.A. Karpovich, N.V. Baidus, D.O. Filatov, S.V. Morozov, Influence of bismuth doping of InAs quantum-dot layer on the morphology and photoelectronic properties of Gas/InAs heterostructures grown by metal-organic chemical vapor deposition, Semiconductors 35 (2001) 93 – 98.

DOI: 10.1134/1.1340297

Google Scholar

[13] T. Kaizu, K. Taguchi, T. Kita, Morphological and chemical instabilities of nitrogen delta-doped GaAs/(Al, Ga)As quantum wells, Journal of Applied Physics 119 (2016) 194306.

DOI: 10.1063/1.4951719

Google Scholar

[14] Z. Mao, H. Lin, M. Xu, et al., Fabrication of co-doped CdSe quantum dot-sensitized TiO2 nanotubes by ultrasound-assisted method and their photoelectrochemical properties, J. Appl. Electrochem. 48 (2017) 147 – 155.

DOI: 10.1007/s10800-017-1138-2

Google Scholar

[15] R.M. Peleshchak, O.O. Dan'kiv, O.V. Kuzyk, Modulation of the direction of radiation emitted by an InAs/GaAs heterolaser with InAs quantum dots under the influence of acoustic wave, Ukr. J. Phys. 57 (2012) 68 – 72.

DOI: 10.30970/jps.14.4402

Google Scholar

[16] H. Gao, C. Xue, G. Hu, K. Zhu, Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium, Ultrasonics Sonochemistry 37 (2017) 120 – 127.

DOI: 10.1016/j.ultsonch.2017.01.001

Google Scholar

[17] R.M. Peleshchak, O.V. Kuzyk, O.O. Dan'kiv, Influence of deformation effects on electrical properties of metal-semiconductor-doped semiconductor structure, Ukr. J. Phys. 55 (2010) 434 – 439.

Google Scholar

[18] N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin, P.S. Kop'ev, Zh.I. Alferov, D. Bimberg, Quantum dot heterostructures: Fabrication, properties, lasers, Semiconductors 32 (1998) 343 – 365.

DOI: 10.1134/1.1187396

Google Scholar

[19] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Ltd : England, (2003).

Google Scholar