[1]
Iijima S. Helical microtubules of graphitic carbon, Nature, 357, 1997, 56-57.
Google Scholar
[2]
Iijima S. and T. Ichihasi Single shell carbon nanotube of 1 nm diameter, Nature, 363, 1996, 603-605.
Google Scholar
[3]
Iijima S., P. M. Ajayan and T. Ichihashi Growth model for carbon nanotubes, Physical Review Letters, 69, 1992, 3100-3103.
DOI: 10.1103/physrevlett.69.3100
Google Scholar
[4]
Thess A., R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomane´k, J. E. Fischer and R. E. Smalley Crystalline ropes of metallic carbon nanotubes, Science, 273, 1996, 483-487.
DOI: 10.1126/science.273.5274.483
Google Scholar
[5]
Iijima S., T. Ichihashi and Y. Ando Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 356, 1992, 776-778.
DOI: 10.1038/356776a0
Google Scholar
[6]
Ebbesen T. W. and P. M. Ajayan Large-scale synthesis of carbon nanotubes, Nature, 358, 1992, 220-222.
DOI: 10.1038/358220a0
Google Scholar
[7]
Journet C., W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee and J. E. Fischer Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 388, 1997, 756-758.
DOI: 10.1038/41972
Google Scholar
[8]
Bethune D. S., C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, 1993, 605-607.
DOI: 10.1038/363605a0
Google Scholar
[9]
Sen R., A. Govindraju and C. N. R. Rao Carbon nanotubes by the metallocene route, Chemical Physics Letters, 267, 1997, 276-280.
DOI: 10.1016/s0009-2614(97)00080-8
Google Scholar
[10]
Lee C. J., J. Park and J. A. Yu Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chemical Physics Letters, 360, 2002, 250-255.
DOI: 10.1016/s0009-2614(02)00831-x
Google Scholar
[11]
Lee T. Y., J. H. Han, S. H. Choi, J. B. Yoo, C. Y. Park, S. Yu, J. Lee, W. Yi and J. M. Kim Comparison of source gases and catalyst metals for growth of carbon nanotube formation, Surface and Coating Technology, 169, 2003, 348-352.
DOI: 10.1016/s0257-8972(03)00108-7
Google Scholar
[12]
Singh C., M. Shaffer, I. Kinloch and A. windle Production of aligned carbon nanotubes by the CVD injection method, Physcia B: Condensed Matter, 323, 2002, 339-340.
DOI: 10.1016/s0921-4526(02)01045-1
Google Scholar
[13]
Endo H., K. Kuwana, K. Saito, D. Quin, R. Andrews and E. A. Grulke CFD predication of carbon nanotube production rate in CVD reactor, Chemical Physics Letters, 387, 2004, 307- 311.
DOI: 10.1016/j.cplett.2004.01.124
Google Scholar
[14]
Cabero M. P., E. Romeo, C. Royo, A. Manzon, A. G. Ruiz and I. R. Ramos Growing mechanism of CNTs: a kinetic approach, Journal of Catalysts, 224, 2004, 197-205.
DOI: 10.1016/j.jcat.2004.03.003
Google Scholar
[15]
Han J. H., S. H. Cho, T. Y. Lee, C. H. Lee, D. Y. Jung, C. W. Yang, J. B. Yoo, C. Y. Park, H. J. Kim, S. Yu, W. Yi, G. P. Park, I. T. Han, N. S. Lee and J. M. Lee Effect of growth parameters on the selective area growth of carbon nanotubes, Thin Solid Films, 409, 2002, 126-132.
DOI: 10.1016/s0040-6090(02)00115-3
Google Scholar
[16]
Ward J. W., B. Q. Wei and P. M. Ajayan Substrate effects on the growth of carbon nanotubes by thermal deposition of methane, Chemical Physics Letters, 376, 2003, 717-725.
DOI: 10.1016/s0009-2614(03)01067-4
Google Scholar
[17]
Bower C., O. Zhou, W. Zhu, D. J Werder and S. Jin Nucleation and growth of the carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters, 77, 2000, 2767-2769.
DOI: 10.1063/1.1319529
Google Scholar
[18]
Lin C. H., H. L. Chang, C. M. Hsu, A. Y. Lo and C. T. Kuo The role of nitrogen in carbon nanotube formation, Diamond and Related Materials, 12, 2003, 1851-1857.
DOI: 10.1016/s0925-9635(03)00209-7
Google Scholar
[19]
Sampedro-Tejedor p., A. Maroto-Valiente, D. M. Nevskaia, V. Munoz, I. Rodriguez-Ramos and A. Guerrero-Ruiz The effect of growth of temperature and iron precursor on the synthesis of high purity carbon nanotubes, Diamond and Related Materials, 16, 2007, 542-549.
DOI: 10.1016/j.diamond.2006.11.056
Google Scholar
[20]
Lee Y. T., N. S. Kim, J. Park, J. B. Han, Y. S. Choi, H. Ryu and H. J. Lee Temperaturedependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 to 1000oC, Chemical Physics Letters, 372, 2003, 853-859.
DOI: 10.1016/s0009-2614(03)00529-3
Google Scholar
[21]
Li W. Z., J. G. Wen and Z. F. Ren Effect of temperature on growth structures of carbon nanotubes by chemical vapor deposition, Applied Physics A: Material Science and Processing, 74, 2002, 397-402.
DOI: 10.1007/s003390201284
Google Scholar
[22]
Perez-Cabero M., I. Rodriguez-Ramos and A. Guerrero-Ruiz Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor, Journal of Catalysis, 215, 2003, 305-316.
DOI: 10.1016/s0021-9517(03)00026-5
Google Scholar
[23]
Chen X. H., C. S. Chen, F. Q. Cheng, G. Zhang and Z. Z. Chen Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD, Materials Letters, 57, 2002, 734-738.
DOI: 10.1016/s0167-577x(02)00863-7
Google Scholar
[24]
Makris T. D., L. Giorgi, R. Giorgi, N. Lisi, E. Salernitano and V. Contini Purification of multi-walled carbon nanotubes grown by thermal CVD on Fe-based catalyst, Advances in Science and Technology, 48, 2006, 50-54.
Google Scholar
[25]
Takagi H., Y. Soneda, H. Hatori, Z. H. Zhu and G. Q. Lu Hydrogen adsorption properties of single-walled carbon nanotubes treated with nitric acid, IEEE, 3, ICONN2006, 54-57.
DOI: 10.1109/iconn.2006.340548
Google Scholar
[26]
Zheng B., Y. Li and J. Liu CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst, Applied Physics A: Material Science and Processing, 74, 2002, 345-348.
DOI: 10.1007/s003390201275
Google Scholar
[27]
Wei J., C. Lijjie, B. Jiang, Y. Li, X. Zhang, H. Zhu, C. Xu and D. Wu Preparation of highly pure double-walled carbon nanotubes, Journal of Material Chemistry, 13, 2003, 1340-1344.
DOI: 10.1039/b300484h
Google Scholar
[28]
Oberlin A., M. Endo and T. Koyama Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32, 1976, 335-349.
DOI: 10.1016/0022-0248(76)90115-9
Google Scholar
[29]
Helveg S., C. Lopez-cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen and J. K. Norskov Atomic-scale imaging of carbon nanofibre growth, Nature, 427, 2004, 426-429.
DOI: 10.1038/nature02278
Google Scholar
[30]
Yuan P., H. Wu, H. Xu, D. Xu, Y Cao and X. Wei Synthesis, characterization and electrocatalytic properties of Fe-Co alloy nanoparticles supported on carbon nanotubes, Materials Chemistry and Physics, 105, 2007, 391-394.
DOI: 10.1016/j.matchemphys.2007.05.004
Google Scholar
[31]
Jankovic L., D. Gournis, K. Dimos, M. A. Karakassides and T. Bakas Catalytic production of carbon nanotubes over first row transition metal oxides supported on montmorillonite, Journal of Physics: Conference Series, 10, 2005, 178-181.
DOI: 10.1088/1742-6596/10/1/044
Google Scholar
[32]
Messina G., V. Modafferi, S. Santangelo, P. Tripodi, M. G. Dpnato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos and A. Pistone Large-scale production of high quality multiwalled carbon nanotubes: Role of precursor gas and of Fe-catalyst support, Diamond and Related Material, 17, 2008, 1482-1488.
DOI: 10.1016/j.diamond.2008.01.060
Google Scholar
[33]
Mahanandia P., P. N. Vishwakarama, K. K. Nanda, V. Paread, K. Barai, A. K. Mondal, S. Sarangi, G. K. Dey and S. V. Subbramanyam Synthesis of multi-wall carbon nanotubes by simple pyrolysis, Solid State Communication, 145, 2008, 143-148.
DOI: 10.1016/j.ssc.2007.10.020
Google Scholar
[34]
Chen X. H., C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang and Z. Z. Chen Non-destructive purification of multiwall carbon nanotubes produced by catalyzed CVD, Material Letters, 57, 2002, 734-738.
DOI: 10.1016/s0167-577x(02)00863-7
Google Scholar
[35]
Zheng B., Y. Li and J. Liu CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst, Applied Physics A: Material Science and Processing, 74, 2002, 345-348.
DOI: 10.1007/s003390201275
Google Scholar
[36]
Afre Rakesh A., T. Soga, T. Jimbo, Mukul Kumar, Y. Ando, M. Sharon, Prakash R. Somani and M. Umeno Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Microporous and Mesoporous Materials, 96, 2006, 184-190.
DOI: 10.1016/j.micromeso.2006.06.036
Google Scholar
[37]
Wei J., L. Ci, B. Jaing, Y. Li, X. Zhang, H. Zhu, C. Xu and D. Wu Preparation of highly pure double-walled carbon nanotubes, Journal of Material Chemistry, 13, 2003, 1340-1344.
DOI: 10.1039/b300484h
Google Scholar
[38]
Collins P. G., M. S. Arnold and P. Avouis Engineering carbon nanotubes and nanotube using electric breakdown, Science, 292, 2001, 706-709.
DOI: 10.1126/science.1058782
Google Scholar
[39]
Ural A., y. Li and H. Dai Electron-field-aligned growth of single wall carbon nanotubes on surfaces, Applied Physics Letters, 81, 2002, 3464-3466.
DOI: 10.1063/1.1518773
Google Scholar
[40]
Lee Y. H., Y. T. Jang, C. H. Choi, D. H. Kim, C. W. Kim, J. E. Lee, Y. S. Han, S. S. Yoon, J. K. Shin, S. T. Kim, E. K. Kim and B. Ju Direct Nanowiring of Carbon Nanotubes for Highly Integrated Electronic and Spintronic Devices, Advance Material, 13, 2001, 1371-1373.
DOI: 10.1002/1521-4095(200109)13:18<1371::aid-adma1371>3.0.co;2-s
Google Scholar
[41]
Couteau E., K. Hernadi, J. W. Seo, L. Thiên-Nga, Cs. Mikó, R. Gaál and F. Farró CVD synthesis of high-purity multiwalled CNTs using CaCO3 catalyst support for large-scale production, Chemical Physics Letters, 378, 2003, 9-17.
DOI: 10.1016/s0009-2614(03)01218-1
Google Scholar
[42]
Wang Y., Fei Wei, Guohua Luo, Hao Yu and Guang sheng Gu The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chemical Physics Letters, 364, 2002, 568-572.
DOI: 10.1016/s0009-2614(02)01384-2
Google Scholar
[43]
Rodriguez J. C., J. A. Pena, A. Monzon, R. Hughes and K. Li Kinetic modeling of the deactivation of commercial silica alumina catalyst during isopropylbenzene cracking, The Chemical Engineering Journal, 58, 1995, 7-13.
DOI: 10.1016/0923-0467(94)02879-f
Google Scholar
[44]
Monzóna A., E. Romeoa and A. Borgna Relationship between the kinetic parameters of different catalyst deactivation models, Chemical Engineering Journal, 94, 2003, 19-28.
DOI: 10.1016/s1385-8947(03)00002-0
Google Scholar
[45]
Villacampa J. I., C. Royo, E. Romo, J. A. Montoya, P. Del Angel and A. Monzón Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts reaction and regeneration studies, Applied Catalysis A: General, 252, 2003, 363-383.
DOI: 10.1016/s0926-860x(03)00492-7
Google Scholar
[46]
[ Ni L., Keiji Kuroda, Ling-Ping Zhou, Tokushi Kizuka, Keishin Ohta, Kiyoto Matsuishi and Junji Nakamura Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts, Carbon, 44, 2006, 2265-2272.
DOI: 10.1016/j.carbon.2006.02.031
Google Scholar
[47]
Pirard S. L., S. Douven, C. Bossuot, G. Heyen and Jean-Paul Pirard A kinetic study of multiwall carbon nanotube synthesis by catalytic chemical vapor deposition using a Fe-Co/Al2O3 catalyst, Carbon, 45, 2007, 1167-1175.
DOI: 10.1016/j.carbon.2007.02.021
Google Scholar
[48]
Singh C., M. S. P. Shaffer and A.H. Windle Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method, Carbon, 41, 2003, 359- 368.
DOI: 10.1016/s0008-6223(02)00314-7
Google Scholar