[1]
Y. Zhou, Y. Zhang, Y. Hu, H. Gu, Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review, Sensors 18 (2018) (2072).
DOI: 10.3390/s18072072
Google Scholar
[2]
L. Peng, L.F. Hu, X.S. Fang, Low-Dimensional Nanostructure Ultraviolet Photodetectors, Adv. Mater. 25 (2013) 5321-5328.
DOI: 10.1002/adma.201301802
Google Scholar
[3]
G. Konstantatos, E.H. Sargent, Nanostructured materials for photon detection, Nat. Nanotechnol. 5 (2010) 391-400.
Google Scholar
[4]
R.X. Yan, D. Gargas, P.D. Yang, Nanowire photonics, Nat. Photonics 3 (2009) 569-576.
DOI: 10.1038/nphoton.2009.184
Google Scholar
[5]
A.P. Alivisatos, Scaling law for structural metastability in semiconductor nanocrystals, Ber. Bunsen-Ges Phys. Chem. 101 (1997) 1573-1577.
DOI: 10.1002/bbpc.19971011104
Google Scholar
[6]
R. L. Penn and J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281 (1998) 969-971.
DOI: 10.1126/science.281.5379.969
Google Scholar
[7]
F. Huang, J.F. Banfield, Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS, J. Am. Chem. Soc. 127 (2005) 4523-4529.
DOI: 10.1021/ja048121c
Google Scholar
[8]
C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Size dependence of structural metastability in semiconductor nanocrystals, Science 276 (1997) 398-401.
DOI: 10.1126/science.276.5311.398
Google Scholar
[9]
A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Melting in Semiconductor Nanocrystals, Science 256, (1992) 1425-1427.
DOI: 10.1126/science.256.5062.1425
Google Scholar
[10]
S. Liu, J. F. Ye, Y. Cao, Q. Shen, Z. F. Liu, L. M. Qi, and X. F. Guo, A flexible and transparent ceramic nanobelt network for soft electronics, Small 4 (2009) 2371-2376.
Google Scholar
[11]
L. Li, P.C. Wu, X.S. Fang, T.Y. Zhai, L. Dai, M.Y. Liao, Y. Koide, H.Q. Wang, Y. Bando, D. Golberg, Single‐Crystalline CdS Nanobelts for Excellent Field‐Emitters and Ultrahigh Quantum‐Efficiency Photodetectors, Adv. Mater. 22 (2010) 3161.
DOI: 10.1002/adma.201000144
Google Scholar
[12]
X.S. Fang, S.L. Xiong, T.Y. Zhai, Y. Bando, M.Y. Liao, U.K. Gautam, Y. Koide, X.G. Zhang, Y.T. Qian, D. Golberg, High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors, Adv. Mater. 21, (2009) 5016.
DOI: 10.1002/adma.200902126
Google Scholar
[13]
S. Nakamura, The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes, Science 281 (1998) 956-961.
DOI: 10.1126/science.281.5379.956
Google Scholar
[14]
S.G. Yang, S. Pakhomov, T. Hung, C.Y. Wong, Room-temperature magnetism in Cr-doped AlN semiconductor films, Appl. Phys. Lett. 81 (2003) 2418.
DOI: 10.1063/1.1509475
Google Scholar
[15]
S.Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. Van Schifgaarde, M.R. McCartney, D.J. Smith, N. Newman, Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett. 82 (2003) 3047.
DOI: 10.1063/1.1570521
Google Scholar
[16]
J. Zheng, Y. Yang, B. Yu, X. Song, X. Li, [0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties, ACS Nano 2 (2008) 134-142.
DOI: 10.1021/nn700363t
Google Scholar
[17]
D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors, Adv. Mater. 26 (2014) 1541-1550.
DOI: 10.1002/adma.201304363
Google Scholar
[18]
F. González-Posada, R. Songmuang, M. Den Hertog, E. Monroy, Room- temperature photodetection dynamics of single GaN nanowires, Nano Lett. 12 (2012) 172.
DOI: 10.1021/nl2032684
Google Scholar
[19]
K. Teker, Gallium nitride nanowire devices and photoelectric properties, Sensors and Actuators A 216 (2014) 142-146.
DOI: 10.1016/j.sna.2014.05.028
Google Scholar
[20]
X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, B.D. Liu, T. Y. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors, Adv. Mater. 21 (2009) 2034-2039.
DOI: 10.1002/adma.200802441
Google Scholar
[21]
L. F. Hu, J. Yan, M. Y. Liao, L. Wu, X. S. Fang, Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors, Small 7 (2011) 1012-1017.
DOI: 10.1002/smll.201002379
Google Scholar
[22]
F. Liu, L. Li, T. Guo, H. Gan, X. Mo, J. Chen, S. Deng, N. Xu, Investigation on the photoconductive behaviors of an individual AlN nanowire under different excited lights, Nanoscale Res. Lett. 7 (2012) 454.
DOI: 10.1186/1556-276x-7-454
Google Scholar
[23]
K. Teker, Aluminium nitride nanowire array films for nanomanufacturing applications, Mat. Sci. and Tech. 31 (2015) 1832-1836.
DOI: 10.1179/1743284715y.0000000027
Google Scholar
[24]
S. Raychaudhuri, S.A. Dayeh, D. Wang, E.T. Yu, Precise semiconductor nanowire placement through dielectrophoresis, Nano Lett. 9 (2009) 2260-2266.
DOI: 10.1021/nl900423g
Google Scholar
[25]
N.V. Joshi, Photoconductivity: Art, Science, and Technology (Dekker, New York, 1990).
Google Scholar
[26]
H. Wu, Y. Sun, D.D. Lin, R. Zhang, C. Zhang, W. Pan, GaN Nanofibers based on Electrospinning: Facile Synthesis, Controlled Assembly, Precise Doping, and Application as High Performance UV Photodetector, Adv. Mater. 21 (2009) 227-231.
DOI: 10.1002/adma.200800529
Google Scholar
[27]
Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, H. Zhang, Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet, Physica B 404 (2009) 4282-4285.
DOI: 10.1016/j.physb.2009.08.011
Google Scholar
[28]
M. Sajjad, W.M. Jadwisienczak, P. Feng, Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector, Nanoscale 6 (2014) 4577-4582.
DOI: 10.1039/c3nr05817d
Google Scholar