Dielectrophoretic Assembly of Aluminum Nitride (AlN) Single Nanowire Deep Ultraviolet Photodetector

Article Preview

Abstract:

High UV-light sensitivity, fast response, and low power consumption are the most important features of nanowire-based devices for new applications in photodetectors, optical switches, and image sensors. Single AlN nanowire deep ultraviolet (UV) photodetector has been fabricated utilizing very high-quality AlN nanowires through a very practical dielectrophoretic assembly scheme. The low-voltage (≤ 3 V) operating UV photodetector has selectively shown a high photocurrent response to the 254 nm UV light. Furthermore, the photocurrent transients have been modelled to determine the rise and decay time constants as 7.7 s and 11.5 s, respectively. In consequence, combination of deep UV light selectivity and low voltage operation make AlN nanowires great candidates for the development of compact deep UV photodetectors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-93

Citation:

Online since:

November 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, Y. Zhang, Y. Hu, H. Gu, Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review, Sensors 18 (2018) (2072).

DOI: 10.3390/s18072072

Google Scholar

[2] L. Peng, L.F. Hu, X.S. Fang, Low-Dimensional Nanostructure Ultraviolet Photodetectors, Adv. Mater. 25 (2013) 5321-5328.

DOI: 10.1002/adma.201301802

Google Scholar

[3] G. Konstantatos, E.H. Sargent, Nanostructured materials for photon detection, Nat. Nanotechnol. 5 (2010) 391-400.

Google Scholar

[4] R.X. Yan, D. Gargas, P.D. Yang, Nanowire photonics, Nat. Photonics 3 (2009) 569-576.

DOI: 10.1038/nphoton.2009.184

Google Scholar

[5] A.P. Alivisatos, Scaling law for structural metastability in semiconductor nanocrystals, Ber. Bunsen-Ges Phys. Chem. 101 (1997) 1573-1577.

DOI: 10.1002/bbpc.19971011104

Google Scholar

[6] R. L. Penn and J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281 (1998) 969-971.

DOI: 10.1126/science.281.5379.969

Google Scholar

[7] F. Huang, J.F. Banfield, Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS, J. Am. Chem. Soc. 127 (2005) 4523-4529.

DOI: 10.1021/ja048121c

Google Scholar

[8] C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Size dependence of structural metastability in semiconductor nanocrystals, Science 276 (1997) 398-401.

DOI: 10.1126/science.276.5311.398

Google Scholar

[9] A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Melting in Semiconductor Nanocrystals, Science 256, (1992) 1425-1427.

DOI: 10.1126/science.256.5062.1425

Google Scholar

[10] S. Liu, J. F. Ye, Y. Cao, Q. Shen, Z. F. Liu, L. M. Qi, and X. F. Guo, A flexible and transparent ceramic nanobelt network for soft electronics, Small 4 (2009) 2371-2376.

Google Scholar

[11] L. Li, P.C. Wu, X.S. Fang, T.Y. Zhai, L. Dai, M.Y. Liao, Y. Koide, H.Q. Wang, Y. Bando, D. Golberg, Single‐Crystalline CdS Nanobelts for Excellent Field‐Emitters and Ultrahigh Quantum‐Efficiency Photodetectors, Adv. Mater. 22 (2010) 3161.

DOI: 10.1002/adma.201000144

Google Scholar

[12] X.S. Fang, S.L. Xiong, T.Y. Zhai, Y. Bando, M.Y. Liao, U.K. Gautam, Y. Koide, X.G. Zhang, Y.T. Qian, D. Golberg, High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors, Adv. Mater. 21, (2009) 5016.

DOI: 10.1002/adma.200902126

Google Scholar

[13] S. Nakamura, The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes, Science 281 (1998) 956-961.

DOI: 10.1126/science.281.5379.956

Google Scholar

[14] S.G. Yang, S. Pakhomov, T. Hung, C.Y. Wong, Room-temperature magnetism in Cr-doped AlN semiconductor films, Appl. Phys. Lett. 81 (2003) 2418.

DOI: 10.1063/1.1509475

Google Scholar

[15] S.Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. Van Schifgaarde, M.R. McCartney, D.J. Smith, N. Newman, Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett. 82 (2003) 3047.

DOI: 10.1063/1.1570521

Google Scholar

[16] J. Zheng, Y. Yang, B. Yu, X. Song, X. Li, [0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties, ACS Nano 2 (2008) 134-142.

DOI: 10.1021/nn700363t

Google Scholar

[17] D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors, Adv. Mater. 26 (2014) 1541-1550.

DOI: 10.1002/adma.201304363

Google Scholar

[18] F. González-Posada, R. Songmuang, M. Den Hertog, E. Monroy, Room- temperature photodetection dynamics of single GaN nanowires, Nano Lett. 12 (2012) 172.

DOI: 10.1021/nl2032684

Google Scholar

[19] K. Teker, Gallium nitride nanowire devices and photoelectric properties, Sensors and Actuators A 216 (2014) 142-146.

DOI: 10.1016/j.sna.2014.05.028

Google Scholar

[20] X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, B.D. Liu, T. Y. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors, Adv. Mater. 21 (2009) 2034-2039.

DOI: 10.1002/adma.200802441

Google Scholar

[21] L. F. Hu, J. Yan, M. Y. Liao, L. Wu, X. S. Fang, Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors, Small 7 (2011) 1012-1017.

DOI: 10.1002/smll.201002379

Google Scholar

[22] F. Liu, L. Li, T. Guo, H. Gan, X. Mo, J. Chen, S. Deng, N. Xu, Investigation on the photoconductive behaviors of an individual AlN nanowire under different excited lights, Nanoscale Res. Lett. 7 (2012) 454.

DOI: 10.1186/1556-276x-7-454

Google Scholar

[23] K. Teker, Aluminium nitride nanowire array films for nanomanufacturing applications, Mat. Sci. and Tech. 31 (2015) 1832-1836.

DOI: 10.1179/1743284715y.0000000027

Google Scholar

[24] S. Raychaudhuri, S.A. Dayeh, D. Wang, E.T. Yu, Precise semiconductor nanowire placement through dielectrophoresis, Nano Lett. 9 (2009) 2260-2266.

DOI: 10.1021/nl900423g

Google Scholar

[25] N.V. Joshi, Photoconductivity: Art, Science, and Technology (Dekker, New York, 1990).

Google Scholar

[26] H. Wu, Y. Sun, D.D. Lin, R. Zhang, C. Zhang, W. Pan, GaN Nanofibers based on Electrospinning: Facile Synthesis, Controlled Assembly, Precise Doping, and Application as High Performance UV Photodetector, Adv. Mater. 21 (2009) 227-231.

DOI: 10.1002/adma.200800529

Google Scholar

[27] Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, H. Zhang, Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet, Physica B 404 (2009) 4282-4285.

DOI: 10.1016/j.physb.2009.08.011

Google Scholar

[28] M. Sajjad, W.M. Jadwisienczak, P. Feng, Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector, Nanoscale 6 (2014) 4577-4582.

DOI: 10.1039/c3nr05817d

Google Scholar