[1]
N.V. Hieu, N.D. Khoang, D.D. Trung, L.D. Toan, N.D. Hoa, Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires, J. Hazard. Mater. 244-245 (2013) 209-216.
DOI: 10.1016/j.jhazmat.2012.11.023
Google Scholar
[2]
H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S Yang, M.M.C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sens. Actuators B. 157 (2011) 310-313.
DOI: 10.1016/j.snb.2011.03.035
Google Scholar
[3]
V. Nagarajan, R. Chandiramouli, DFT Investigation of Formaldehyde Adsorption Characteristics on MgO Nanotube, Inorg Organomet Polym. 24 (2014) 1038–1047.
DOI: 10.1007/s10904-014-0095-z
Google Scholar
[4]
B. Makiabadi, M. Zakarianezhad, S, Mohammadzamani, Theoretical Study of CN Radicals Chemisorption on the Electronic Properties of BC2N Nanotube, Journal of Nano Research. 48 (2017) 38-58.
DOI: 10.4028/www.scientific.net/jnanor.48.38
Google Scholar
[5]
A. Mirzaei, J.H. Kim, H.W. Kim, S.S. Kim, How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature, Sens Actuators B. 258 (2018) 270-294.
DOI: 10.1016/j.snb.2017.11.066
Google Scholar
[6]
T. Krishnakumar, R.Jayaprakash, T.Prakash, D.Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, CdO-basednanostructuresas novel CO2 gas sensors, Nanotechnology. 22 (2011) 325501- 325508.
DOI: 10.1088/0957-4484/22/32/325501
Google Scholar
[7]
G.G. Mandayo, F. Gonzalez, I. Rivas, I. Ayerdi, J. Herran, BaTiO3–CuO sputtered thin film for carbon dioxide detection, Sens. Actuators B.118 (2006) 305–310.
DOI: 10.1016/j.snb.2006.04.056
Google Scholar
[8]
C.R. Michel, A.H. Martinez, F.H. Villalpando, J.P.M. Lazaro. Carbon dioxide gas sensing behavior of nanostructured GdCoO3 prepared by a solution-polymerization method, J. Alloys Compd. 484 (2009) 605–611.
DOI: 10.1016/j.jallcom.2009.05.003
Google Scholar
[9]
P.K. Kannana, R. Saraswathi, J.B.B. Rayappan, CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film, Ceram. Int. 40 (2014) 13115–13122.
DOI: 10.1016/j.ceramint.2014.05.011
Google Scholar
[10]
A.R. Gonza´lez-Elipe, J. Soria, EPR Study of SO2 adsorption on ZnO, Z. Phys. Chem. 132 (1982) 67-74.
Google Scholar
[11]
M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, M.M. Abdullah, Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst, Appl Surf Sci. 258 (2012) 7515-7522.
DOI: 10.1016/j.apsusc.2012.04.075
Google Scholar
[12]
H.S. Hong, D.T. Phan, G.S. Chung, High-sensitivity humidity sensors with ZnO nanorods based two-port surface acoustic wave delay line, Sens. Actuators B Chem. 1283 (2012) 171–172.
DOI: 10.1016/j.snb.2012.06.026
Google Scholar
[13]
B.B. Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Mater. Chem. Phys. 64 (2000) 62-65.
DOI: 10.1016/s0254-0584(99)00267-9
Google Scholar
[14]
H. Lin, S. Tzeng, P. Hsiau, W. Tsai, Electrode effects on gas sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater. 10 (1998) 465-477.
DOI: 10.1016/s0965-9773(98)00087-7
Google Scholar
[15]
J.B. Miller, T. Ashok, S. Lee, E. Broitman, Zinc oxide-based thin film functional layers for chemiresistive sensors, Thin Solid Films. 520 (2012) 6669–6676.
DOI: 10.1016/j.tsf.2012.07.016
Google Scholar
[16]
E. Chigo Anota, H. Hernandez Cocoletzi, M. Salazar Villanueva, D. Garcia Toral, First principles investigation of the interaction between BN, SiC and ZnO nanotubes—BaTiO3, Superlatt. Microstruct. 63 (2013) 298–305.
DOI: 10.1016/j.spmi.2013.09.011
Google Scholar
[17]
Y. Zhang, Y.H. Wen, J.C. Zheng, Z.Z. Zhu, Strain-induced structural and direct-to-indirect band gap transition in ZnO nanotubes, Phys. Lett. A. 374 (2010) 2846–2849.
DOI: 10.1016/j.physleta.2010.04.069
Google Scholar
[18]
X. Shen, P.B. Allen, J.T. Muckerman, J.W. Davenport, J.C. Zheng, Wire versus tube: stability of small one-dimensional ZnO nanostructures, Nano Lett. 7 (2007) 2267–2271.
DOI: 10.1021/nl070788k
Google Scholar
[19]
D. Farmanzadeh, L. Tabari, First-principles investigation of the electronic and field emission properties of C-doped ZnO nanotube, Struct. Chem. 25 (2014)1437–1442.
DOI: 10.1007/s11224-014-0423-5
Google Scholar
[20]
R. Ahmad, N. Tripathy, S.H. Kim, A. Umar, A. Al-Hajry, Y.B. Hahn, High perfor-mance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes, Electrochem. Commun. 38 (2014) 4–7.
DOI: 10.1016/j.elecom.2013.10.028
Google Scholar
[21]
D. Farmanzadeh, L. Tabari, DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor, Appl Surf Sci. 324 (2015) 864–870.
DOI: 10.1016/j.apsusc.2014.11.061
Google Scholar
[22]
Z.H. Ibupoto, N. Jamal, K. Khun, M. Willander, Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensore for the detection of C-reactive protein, Sens. Actuators B: Chem. 166–167 (2012) 809– 814.
DOI: 10.1016/j.snb.2012.03.083
Google Scholar
[23]
L. Liu, C. Gao, X. Pan, X. An, Y. Xie, M. Zhou, J. Song, H. Zhang, Z. Liu, Q. Zhao, Y, Zhang, E. Xie, Synthesis and H2 sensing properties of aligned ZnO nanotubes, Appl. Surf. Sci. 257 (2011) 2264–2268.
DOI: 10.1016/j.apsusc.2010.09.085
Google Scholar
[24]
M. Topsakal, S. Cahangirov, E. Bekaroglu, S. Ciraci, First-principles study of zinc oxide honeycomb structures, Phys. Rev. B. 80 (2009) 235119-235133.
DOI: 10.1103/physrevb.80.235119
Google Scholar
[25]
H. Xu, R.Q. Zhang, X.H. Zhang, A.L. Rosa, T. Frauenheim, Structural and electronic properties of ZnO nanotubes from density functional calculations, Nanotechnology. 18 (2007) 485713-485718.
DOI: 10.1088/0957-4484/18/48/485713
Google Scholar
[26]
Z.C. Tu, X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes, Phys. Rev. B. 74 (2006) 035434-035436.
DOI: 10.1103/physrevb.74.035434
Google Scholar
[27]
W. An, X.J. Wu, X.C. Zeng, Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube: a density functional theory study, J. Phys. Chem. C. 112 (2008) 5747-5755.
DOI: 10.1021/jp711105d.s001
Google Scholar
[28]
J. Beheshtian, A.A. Peyghan, Z. Bagheri, Adsorption and dissociation of Cl2 molecule on ZnO nanocluster, Appl Surf Sci. 258 (2012) 8171– 8176.
DOI: 10.1016/j.apsusc.2012.05.016
Google Scholar
[29]
N.L. Marana, S.M. Casassa, J.R. Sambrano, structural, electronic, vibrational, and topological analysis of single-alled Zinc Oxide nanotubes, J. Phys. Chem. C, 120 (2016) 6814-6823.
DOI: 10.1021/acs.jpcc.5b11905
Google Scholar
[30]
L.S.R. Rocha, C.R. Foschini, C.C. Silva, E. Longo, A.Z. Simoes, Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route. Ceram. Int. 42 (2016) 4539-4545.
DOI: 10.1016/j.ceramint.2015.11.145
Google Scholar
[31]
A.C. Catto, L.F. da Silva, C. Ribeiro, S. Bernardini, K. Aguir, E. Longo, V.R. Mastelaro, An easy method of preparing ozone gas sensors based on ZnO nanorods, Rsc Advances. 5 (2015) 19528-19533.
DOI: 10.1039/c5ra00581g
Google Scholar
[32]
G.Biasotto, M.G.A. Ranieri, C.R. Foschini, A.Z. Simoes, E.Longo, M.A. Zaghete, Gas sensor applications of zinc oxide thin film grown by the polymeric precursor method, Ceram. Int. 40 (2014) 14991-14996.
DOI: 10.1016/j.ceramint.2014.06.099
Google Scholar
[33]
D.M. Yi, S.G. Sheng, W.C. Lei, Z.L. Ping, C.X. Rong, F.H. Ping, A theoretical study of a single-walled ZnO nanotube as a sensor for H2O molecules, Commun. Theor. Phys. 58 (2012) 275–279.
Google Scholar
[34]
S.K. Cho, D.H. Kim, B.S. Lee, J. Jung, W.R. Yu, S.H. Hong, S. Lee, Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process, Sens. Actuators B: Chem. 162 (2012) 300–306.
DOI: 10.1016/j.snb.2011.12.081
Google Scholar
[35]
A.A. Peyghan, S. Yourdkhani, Capture of carbon dioxide by a nanosized tube of BeO: a DFT study, Struct Chem. 25 (2014)419–426.
DOI: 10.1007/s11224-013-0307-0
Google Scholar
[36]
M Najafi, Adsorption of carbon dioxide (CO2) at S functionalized boron nitride (BN) and aluminum nitride (AlN) nanotubes (9, 0): A quantum chemical investigation, Appl Surf Sci. 384 (2016) 380-385.
DOI: 10.1016/j.apsusc.2016.05.050
Google Scholar
[37]
C. Tabtimsai, B. Wanno, V. Ruangpornvisuti, Theoretical investigation of CO2 and NO2 adsorption onto Co-, Rh- and Ir-doped (5,5) single-walled carbon nanotubes, Mater Chem Phys. 138 (2013) 709-715.
DOI: 10.1016/j.matchemphys.2012.12.045
Google Scholar
[38]
M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT (2009).
Google Scholar
[39]
S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 19 (1970) 553-566.
DOI: 10.1080/00268977000101561
Google Scholar
[40]
T.Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33 (2012) 580-592.
DOI: 10.1002/jcc.22885
Google Scholar
[41]
W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33–38.
DOI: 10.1016/0263-7855(96)00018-5
Google Scholar
[42]
A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (1988) 899–926.
DOI: 10.1021/cr00088a005
Google Scholar
[43]
F. Biegler-König, J. Schönbohm, D. Bayles, AIM2000 —A Program to Analyze and Visualize Atoms in Molecules. J. Comp. Chem. 22 (2001) 545–559.
DOI: 10.1002/jcc.10085
Google Scholar