Influence of CO2 Molecules Adsorption on the Electronic Properties of Zigzag and Armchair ZnO Nanotubes

Article Preview

Abstract:

Here, the adsorption behavior of the CO2 molecules on electronic properties of zigzag and armchair ZnO nanotubes (ZnONTs) has been studied at M06-2X/6-31G(d) level of theory. It is found that CO2 molecules can be physically adsorbed on the nanotubes. Two minima structures A (monodentate) and B (bidentate) were found on the potential energy surface. Inspection of the results shows that in zigzag and armchair nanotubes, the monodentate complex is more stable than bidentate complex. Also, the stability of complexes increases by increasing the number of CO2 molecules. Comparison of adsorption energies shows that adsorption of CO2 molecules over zigzag (6, 0) model is stronger than armchair (4,4) model. In this work, the various parameters such as electronic chemical potential (m), hardness (ƞ), softness (S), the maximum amount of electronic charge (DNmax), electrophilicity index (ω), dipole moment and work function were investigated to evaluate the reactivity of structures. It is predicted that the conductivity and reactivity of nanotubes increase upon complexation. Based on the natural bond orbital (NBO) analysis, in all complexes charge transfer occurs from CO2 molecules to the nanotube. Theory of atoms in molecules (AIM) was also applied to characterize OCO2… Zn interaction in nanotubes. In addition, the interaction strength is studied through the reduced density gradient (RDG) function. It is predicted that the ZnONTs can be introduced as a favorable candidate in the design and construction of sensors for detecting CO2 molecules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-62

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.V. Hieu, N.D. Khoang, D.D. Trung, L.D. Toan, N.D. Hoa, Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires, J. Hazard. Mater. 244-245 (2013) 209-216.

DOI: 10.1016/j.jhazmat.2012.11.023

Google Scholar

[2] H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S Yang, M.M.C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sens. Actuators B. 157 (2011) 310-313.

DOI: 10.1016/j.snb.2011.03.035

Google Scholar

[3] V. Nagarajan, R. Chandiramouli, DFT Investigation of Formaldehyde Adsorption Characteristics on MgO Nanotube, Inorg Organomet Polym. 24 (2014) 1038–1047.

DOI: 10.1007/s10904-014-0095-z

Google Scholar

[4] B. Makiabadi, M. Zakarianezhad, S, Mohammadzamani, Theoretical Study of CN Radicals Chemisorption on the Electronic Properties of BC2N Nanotube, Journal of Nano Research. 48 (2017) 38-58.

DOI: 10.4028/www.scientific.net/jnanor.48.38

Google Scholar

[5] A. Mirzaei, J.H. Kim, H.W. Kim, S.S. Kim, How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature, Sens Actuators B. 258 (2018) 270-294.

DOI: 10.1016/j.snb.2017.11.066

Google Scholar

[6] T. Krishnakumar, R.Jayaprakash, T.Prakash, D.Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, CdO-basednanostructuresas novel CO2 gas sensors, Nanotechnology. 22 (2011) 325501- 325508.

DOI: 10.1088/0957-4484/22/32/325501

Google Scholar

[7] G.G. Mandayo, F. Gonzalez, I. Rivas, I. Ayerdi, J. Herran, BaTiO3–CuO sputtered thin film for carbon dioxide detection, Sens. Actuators B.118 (2006) 305–310.

DOI: 10.1016/j.snb.2006.04.056

Google Scholar

[8] C.R. Michel, A.H. Martinez, F.H. Villalpando, J.P.M. Lazaro. Carbon dioxide gas sensing behavior of nanostructured GdCoO3 prepared by a solution-polymerization method, J. Alloys Compd. 484 (2009) 605–611.

DOI: 10.1016/j.jallcom.2009.05.003

Google Scholar

[9] P.K. Kannana, R. Saraswathi, J.B.B. Rayappan, CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film, Ceram. Int. 40 (2014) 13115–13122.

DOI: 10.1016/j.ceramint.2014.05.011

Google Scholar

[10] A.R. Gonza´lez-Elipe, J. Soria, EPR Study of SO2 adsorption on ZnO, Z. Phys. Chem. 132 (1982) 67-74.

Google Scholar

[11] M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, M.M. Abdullah, Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst, Appl Surf Sci. 258 (2012) 7515-7522.

DOI: 10.1016/j.apsusc.2012.04.075

Google Scholar

[12] H.S. Hong, D.T. Phan, G.S. Chung, High-sensitivity humidity sensors with ZnO nanorods based two-port surface acoustic wave delay line, Sens. Actuators B Chem. 1283 (2012) 171–172.

DOI: 10.1016/j.snb.2012.06.026

Google Scholar

[13] B.B. Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Mater. Chem. Phys. 64 (2000) 62-65.

DOI: 10.1016/s0254-0584(99)00267-9

Google Scholar

[14] H. Lin, S. Tzeng, P. Hsiau, W. Tsai, Electrode effects on gas sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater. 10 (1998) 465-477.

DOI: 10.1016/s0965-9773(98)00087-7

Google Scholar

[15] J.B. Miller, T. Ashok, S. Lee, E. Broitman, Zinc oxide-based thin film functional layers for chemiresistive sensors, Thin Solid Films. 520 (2012) 6669–6676.

DOI: 10.1016/j.tsf.2012.07.016

Google Scholar

[16] E. Chigo Anota, H. Hernandez Cocoletzi, M. Salazar Villanueva, D. Garcia Toral, First principles investigation of the interaction between BN, SiC and ZnO nanotubes—BaTiO3, Superlatt. Microstruct. 63 (2013) 298–305.

DOI: 10.1016/j.spmi.2013.09.011

Google Scholar

[17] Y. Zhang, Y.H. Wen, J.C. Zheng, Z.Z. Zhu, Strain-induced structural and direct-to-indirect band gap transition in ZnO nanotubes, Phys. Lett. A. 374 (2010) 2846–2849.

DOI: 10.1016/j.physleta.2010.04.069

Google Scholar

[18] X. Shen, P.B. Allen, J.T. Muckerman, J.W. Davenport, J.C. Zheng, Wire versus tube: stability of small one-dimensional ZnO nanostructures, Nano Lett. 7 (2007) 2267–2271.

DOI: 10.1021/nl070788k

Google Scholar

[19] D. Farmanzadeh, L. Tabari, First-principles investigation of the electronic and field emission properties of C-doped ZnO nanotube, Struct. Chem. 25 (2014)1437–1442.

DOI: 10.1007/s11224-014-0423-5

Google Scholar

[20] R. Ahmad, N. Tripathy, S.H. Kim, A. Umar, A. Al-Hajry, Y.B. Hahn, High perfor-mance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes, Electrochem. Commun. 38 (2014) 4–7.

DOI: 10.1016/j.elecom.2013.10.028

Google Scholar

[21] D. Farmanzadeh, L. Tabari, DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor, Appl Surf Sci. 324 (2015) 864–870.

DOI: 10.1016/j.apsusc.2014.11.061

Google Scholar

[22] Z.H. Ibupoto, N. Jamal, K. Khun, M. Willander, Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensore for the detection of C-reactive protein, Sens. Actuators B: Chem. 166–167 (2012) 809– 814.

DOI: 10.1016/j.snb.2012.03.083

Google Scholar

[23] L. Liu, C. Gao, X. Pan, X. An, Y. Xie, M. Zhou, J. Song, H. Zhang, Z. Liu, Q. Zhao, Y, Zhang, E. Xie, Synthesis and H2 sensing properties of aligned ZnO nanotubes, Appl. Surf. Sci. 257 (2011) 2264–2268.

DOI: 10.1016/j.apsusc.2010.09.085

Google Scholar

[24] M. Topsakal, S. Cahangirov, E. Bekaroglu, S. Ciraci, First-principles study of zinc oxide honeycomb structures, Phys. Rev. B. 80 (2009) 235119-235133.

DOI: 10.1103/physrevb.80.235119

Google Scholar

[25] H. Xu, R.Q. Zhang, X.H. Zhang, A.L. Rosa, T. Frauenheim, Structural and electronic properties of ZnO nanotubes from density functional calculations, Nanotechnology. 18 (2007) 485713-485718.

DOI: 10.1088/0957-4484/18/48/485713

Google Scholar

[26] Z.C. Tu, X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes, Phys. Rev. B. 74 (2006) 035434-035436.

DOI: 10.1103/physrevb.74.035434

Google Scholar

[27] W. An, X.J. Wu, X.C. Zeng, Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube: a density functional theory study, J. Phys. Chem. C. 112 (2008) 5747-5755.

DOI: 10.1021/jp711105d.s001

Google Scholar

[28] J. Beheshtian, A.A. Peyghan, Z. Bagheri, Adsorption and dissociation of Cl2 molecule on ZnO nanocluster, Appl Surf Sci. 258 (2012) 8171– 8176.

DOI: 10.1016/j.apsusc.2012.05.016

Google Scholar

[29] N.L. Marana, S.M. Casassa, J.R. Sambrano, structural, electronic, vibrational, and topological analysis of single-alled Zinc Oxide nanotubes, J. Phys. Chem. C, 120 (2016) 6814-6823.

DOI: 10.1021/acs.jpcc.5b11905

Google Scholar

[30] L.S.R. Rocha, C.R. Foschini, C.C. Silva, E. Longo, A.Z. Simoes, Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route. Ceram. Int. 42 (2016) 4539-4545.

DOI: 10.1016/j.ceramint.2015.11.145

Google Scholar

[31] A.C. Catto, L.F. da Silva, C. Ribeiro, S. Bernardini, K. Aguir, E. Longo, V.R. Mastelaro, An easy method of preparing ozone gas sensors based on ZnO nanorods, Rsc Advances. 5 (2015) 19528-19533.

DOI: 10.1039/c5ra00581g

Google Scholar

[32] G.Biasotto, M.G.A. Ranieri, C.R. Foschini, A.Z. Simoes, E.Longo, M.A. Zaghete, Gas sensor applications of zinc oxide thin film grown by the polymeric precursor method, Ceram. Int. 40 (2014) 14991-14996.

DOI: 10.1016/j.ceramint.2014.06.099

Google Scholar

[33] D.M. Yi, S.G. Sheng, W.C. Lei, Z.L. Ping, C.X. Rong, F.H. Ping, A theoretical study of a single-walled ZnO nanotube as a sensor for H2O molecules, Commun. Theor. Phys. 58 (2012) 275–279.

Google Scholar

[34] S.K. Cho, D.H. Kim, B.S. Lee, J. Jung, W.R. Yu, S.H. Hong, S. Lee, Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process, Sens. Actuators B: Chem. 162 (2012) 300–306.

DOI: 10.1016/j.snb.2011.12.081

Google Scholar

[35] A.A. Peyghan, S. Yourdkhani, Capture of carbon dioxide by a nanosized tube of BeO: a DFT study, Struct Chem. 25 (2014)419–426.

DOI: 10.1007/s11224-013-0307-0

Google Scholar

[36] M Najafi, Adsorption of carbon dioxide (CO2) at S functionalized boron nitride (BN) and aluminum nitride (AlN) nanotubes (9, 0): A quantum chemical investigation, Appl Surf Sci. 384 (2016) 380-385.

DOI: 10.1016/j.apsusc.2016.05.050

Google Scholar

[37] C. Tabtimsai, B. Wanno, V. Ruangpornvisuti, Theoretical investigation of CO2 and NO2 adsorption onto Co-, Rh- and Ir-doped (5,5) single-walled carbon nanotubes, Mater Chem Phys. 138 (2013) 709-715.

DOI: 10.1016/j.matchemphys.2012.12.045

Google Scholar

[38] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT (2009).

Google Scholar

[39] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 19 (1970) 553-566.

DOI: 10.1080/00268977000101561

Google Scholar

[40] T.Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33 (2012) 580-592.

DOI: 10.1002/jcc.22885

Google Scholar

[41] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33–38.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[42] A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (1988) 899–926.

DOI: 10.1021/cr00088a005

Google Scholar

[43] F. Biegler-König, J. Schönbohm, D. Bayles, AIM2000 —A Program to Analyze and Visualize Atoms in Molecules. J. Comp. Chem. 22 (2001) 545–559.

DOI: 10.1002/jcc.10085

Google Scholar