[1]
S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in, United States, 1995, pp.99-105.
Google Scholar
[2]
Z. Said, M.H. Sajid, R. Saidur, M. Kamalisarvestani, N.A. Rahim, Radiative properties of nanofluids, International Communications in Heat and Mass Transfer, 46 (2013) 74-84.
DOI: 10.1016/j.icheatmasstransfer.2013.05.013
Google Scholar
[3]
P.K. Nagarajan, J. Subramani, S. Suyambazhahan, R. Sathyamurthy, Nanofluids for solar collector applications: A review, Energy Procedia, 61 (2014) 2416-2434.
DOI: 10.1016/j.egypro.2014.12.017
Google Scholar
[4]
R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale Research Letters, 6(1) (2011) 225.
DOI: 10.1186/1556-276x-6-225
Google Scholar
[5]
K. Wong, O. De Leon, Applications of Nanofluids: Current and Future, Advances in Mechanical Engineering, 2 (2010) 11.
Google Scholar
[6]
M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications, Renewable and Sustainable Energy Reviews, 74 (2017) 638-670.
DOI: 10.1016/j.rser.2017.02.073
Google Scholar
[7]
D.K. Devendiran, V.A. Amirtham, A review on preparation, characterization, properties and applications of nanofluids, Renewable and Sustainable Energy Reviews, 60 (2016) 21-40.
DOI: 10.1016/j.rser.2016.01.055
Google Scholar
[8]
M. Du, G.H. Tang, Optical property of nanofluids with particle agglomeration, 122 (2015) 864-872.
DOI: 10.1016/j.solener.2015.10.009
Google Scholar
[9]
D. Jing, D. Song, Optical properties of nanofluids considering particle size distribution: Experimental and theoretical investigations, 78 (2017) 452-465.
DOI: 10.1016/j.rser.2017.04.084
Google Scholar
[10]
Y. Xuan, Q. Li, W. Hu, Aggregation structure and thermal conducting of nanofluids, AIChE Journal, 49(4) (2003) 1038-1043.
DOI: 10.1002/aic.690490420
Google Scholar
[11]
U. Nobbmann, A. Morfesis, Light scattering and nanoparticles, Materials Today, 12(5) (2009) 52-54.
DOI: 10.1016/s1369-7021(09)70164-6
Google Scholar
[12]
Q. Zhu, Y. Cui, L. Mu, L. Tang, Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation, International Journal of Thermophysics, 34(12) (2013) 2307-2321.
DOI: 10.1007/s10765-012-1208-y
Google Scholar
[13]
M.C.J. Large, D.R. McKenzie, M.I. Large, Incoherent reflection processes: a discrete approach, Optics Communications, 128(4) (1996) 307-314.
DOI: 10.1016/0030-4018(95)00761-x
Google Scholar
[14]
L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, D. Jafrancesco, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers, Nanoscale Research Letters, 6(1) (2011) 282.
DOI: 10.1186/1556-276x-6-282
Google Scholar
[15]
Z. Said, M.H. Sajid, R. Saidur, G.A. Mahdiraji, N.A. Rahim, Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector, Numerical Heat Transfer Applications, 67 (2015) 1010-1027.
DOI: 10.1080/10407782.2014.955344
Google Scholar
[16]
Z. Huang, J. Bai, P. Luo, Investigation on optical theoretical models of SiO2 nanofluids, Advances in Engineering Research, 134 (2018) 108-113.
Google Scholar
[17]
J. Tan, Y. Xie, F. Wang, J. Lin, L. Ma, Investigation of optical properties and radiative transfer of TiO2 nanofluids with the consideration of scattering effects, International Journal of Heat and Mass Transfer, 115 (2017) 1103-1112.
DOI: 10.1016/j.ijheatmasstransfer.2017.07.127
Google Scholar
[18]
M. Karami, M.A. Akhavan-Behabadi, M. Raisee Dehkordi, S. Delfani, Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation, Solar Energy Materials and Solar Cells, 144 (2016) 136-142.
DOI: 10.1016/j.solmat.2015.08.018
Google Scholar
[19]
N. Ali, J. Amaral Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, (2018).
Google Scholar
[20]
W. Chamsa-ard, S. Brundavanam, C. Fung, D. Fawcett, E. Poinern, Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review, (2017).
DOI: 10.3390/nano7060131
Google Scholar
[21]
H. Koca, S. Doganay, A. Turgut, I. Tavman, R. Saidur, M.M. Islam, Effect of particle size on the viscosity of nanofluids: A review, (2018).
DOI: 10.1016/j.rser.2017.07.016
Google Scholar
[22]
M.H. Ahmadi, A. Mirlohi, M. Alhuyi Nazari, R. Ghasempour, A review of thermal conductivity of various nanofluids, Journal of Molecular Liquids, 265 (2018) 181-188.
DOI: 10.1016/j.molliq.2018.05.124
Google Scholar
[23]
M.F. Modest, Chapter 10 - The Radiative Transfer Equation in Participating Media (RTE), in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.279-302.
DOI: 10.1016/b978-0-12-386944-9.50010-8
Google Scholar
[24]
M.F. Modest, Chapter 1 - Fundamentals of Thermal Radiation, in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.1-30.
Google Scholar
[25]
M.A. Davis, A.K. Dunn, Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media, Opt. Express, 23(13) (2015) 17145-17155.
DOI: 10.1364/oe.23.017145
Google Scholar
[26]
J.C. Ramella-Roman, S.A. Prahl, S.L. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: Part I, Opt. Express, 13(12) (2005) 4420-4438.
DOI: 10.1364/opex.13.004420
Google Scholar
[27]
H.H. Tynes, G.W. Kattawar, E.P. Zege, I.L. Katsev, A.S. Prikhach, L.I. Chaikovskaya, Monte carlo and multicomponent approximation methods for vector radiative transfer by use of effective mueller matrix calculations, Appl. Opt., 40(3) (2001) 400-412.
DOI: 10.1364/ao.40.000400
Google Scholar
[28]
R. Vaillon, B.T. Wong, M.P. Mengüç, Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method, Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4) (2004) 383-394.
DOI: 10.1016/s0022-4073(03)00257-7
Google Scholar
[29]
B. Wong, M.P. Mengüç, Comparison of Monte Carlo techniques to predict the propagation of a collimated beam in participating media, Numerical Heat Transfer, Part B, 42 (2002) 119-140.
DOI: 10.1080/10407790190053860
Google Scholar
[30]
M.J. Weber, Handbook of Optical Materials, Taylor & Francis, (2002).
Google Scholar
[31]
M.F. Modest, Chapter 12 - Radiative Properties of Particulate Media, in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.387-439.
DOI: 10.1016/b978-0-12-386944-9.50012-1
Google Scholar
[32]
C.R. Wylie, L.C. Barrett, Advanced engineering mathematics, McGraw-Hill, (1995).
Google Scholar
[33]
J.R. Howell, The Monte Carlo method in radiative heat transfer, Journal of Heat Transfer, 120(3) (1998) 547-560.
DOI: 10.1115/1.2824310
Google Scholar
[34]
N. Metropolis, S. Ulam, The Monte Carlo Method, J. Am. Stat. Assoc., 44(247) (1949) 335-341.
Google Scholar
[35]
M.F. Modest, Chapter 21 - The Monte Carlo Method for Participating Media, in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.694-723.
DOI: 10.1016/b978-0-12-386944-9.50021-2
Google Scholar