Study of Light Scattering by TiO2, Ag, and SiO2 Nanofluids with Particle Diameters of 20-60 nm

Article Preview

Abstract:

In this research, we detailed how the following factors affect the scattering of light by nanofluids: (1) nanoparticle sizes, (2) volume fraction of nanoparticles, and (3) nanoparticle materials. Mie theory was used to calculate the radiative properties of the nanofluids. The radiative properties were then applied into the Radiative Transfer Equation (RTE) to solve for the transmittance and reflectance of light through the nanofluids. The RTE was solved using the Monte Carlo method. Results showed that when the size of nanoparticles and the volume fraction increase, absorption and scattering coefficients increase as well. For silver nanofluids, absorption and scattering coefficients decrease beyond nanoparticle size of about 50 nm. Transmittance of light decreased when nanoparticle sizes increased. When comparing between TiO2, Ag, and SiO2 nanofluids, Ag nanofluids exhibit the highest light absorption followed by TiO2 and SiO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-20

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in, United States, 1995, pp.99-105.

Google Scholar

[2] Z. Said, M.H. Sajid, R. Saidur, M. Kamalisarvestani, N.A. Rahim, Radiative properties of nanofluids, International Communications in Heat and Mass Transfer, 46 (2013) 74-84.

DOI: 10.1016/j.icheatmasstransfer.2013.05.013

Google Scholar

[3] P.K. Nagarajan, J. Subramani, S. Suyambazhahan, R. Sathyamurthy, Nanofluids for solar collector applications: A review, Energy Procedia, 61 (2014) 2416-2434.

DOI: 10.1016/j.egypro.2014.12.017

Google Scholar

[4] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale Research Letters, 6(1) (2011) 225.

DOI: 10.1186/1556-276x-6-225

Google Scholar

[5] K. Wong, O. De Leon, Applications of Nanofluids: Current and Future, Advances in Mechanical Engineering, 2 (2010) 11.

Google Scholar

[6] M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications, Renewable and Sustainable Energy Reviews, 74 (2017) 638-670.

DOI: 10.1016/j.rser.2017.02.073

Google Scholar

[7] D.K. Devendiran, V.A. Amirtham, A review on preparation, characterization, properties and applications of nanofluids, Renewable and Sustainable Energy Reviews, 60 (2016) 21-40.

DOI: 10.1016/j.rser.2016.01.055

Google Scholar

[8] M. Du, G.H. Tang, Optical property of nanofluids with particle agglomeration, 122 (2015) 864-872.

DOI: 10.1016/j.solener.2015.10.009

Google Scholar

[9] D. Jing, D. Song, Optical properties of nanofluids considering particle size distribution: Experimental and theoretical investigations, 78 (2017) 452-465.

DOI: 10.1016/j.rser.2017.04.084

Google Scholar

[10] Y. Xuan, Q. Li, W. Hu, Aggregation structure and thermal conducting of nanofluids, AIChE Journal, 49(4) (2003) 1038-1043.

DOI: 10.1002/aic.690490420

Google Scholar

[11] U. Nobbmann, A. Morfesis, Light scattering and nanoparticles, Materials Today, 12(5) (2009) 52-54.

DOI: 10.1016/s1369-7021(09)70164-6

Google Scholar

[12] Q. Zhu, Y. Cui, L. Mu, L. Tang, Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation, International Journal of Thermophysics, 34(12) (2013) 2307-2321.

DOI: 10.1007/s10765-012-1208-y

Google Scholar

[13] M.C.J. Large, D.R. McKenzie, M.I. Large, Incoherent reflection processes: a discrete approach, Optics Communications, 128(4) (1996) 307-314.

DOI: 10.1016/0030-4018(95)00761-x

Google Scholar

[14] L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, D. Jafrancesco, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers, Nanoscale Research Letters, 6(1) (2011) 282.

DOI: 10.1186/1556-276x-6-282

Google Scholar

[15] Z. Said, M.H. Sajid, R. Saidur, G.A. Mahdiraji, N.A. Rahim, Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector, Numerical Heat Transfer Applications, 67 (2015) 1010-1027.

DOI: 10.1080/10407782.2014.955344

Google Scholar

[16] Z. Huang, J. Bai, P. Luo, Investigation on optical theoretical models of SiO2 nanofluids, Advances in Engineering Research, 134 (2018) 108-113.

Google Scholar

[17] J. Tan, Y. Xie, F. Wang, J. Lin, L. Ma, Investigation of optical properties and radiative transfer of TiO2 nanofluids with the consideration of scattering effects, International Journal of Heat and Mass Transfer, 115 (2017) 1103-1112.

DOI: 10.1016/j.ijheatmasstransfer.2017.07.127

Google Scholar

[18] M. Karami, M.A. Akhavan-Behabadi, M. Raisee Dehkordi, S. Delfani, Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation, Solar Energy Materials and Solar Cells, 144 (2016) 136-142.

DOI: 10.1016/j.solmat.2015.08.018

Google Scholar

[19] N. Ali, J. Amaral Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, (2018).

Google Scholar

[20] W. Chamsa-ard, S. Brundavanam, C. Fung, D. Fawcett, E. Poinern, Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review, (2017).

DOI: 10.3390/nano7060131

Google Scholar

[21] H. Koca, S. Doganay, A. Turgut, I. Tavman, R. Saidur, M.M. Islam, Effect of particle size on the viscosity of nanofluids: A review, (2018).

DOI: 10.1016/j.rser.2017.07.016

Google Scholar

[22] M.H. Ahmadi, A. Mirlohi, M. Alhuyi Nazari, R. Ghasempour, A review of thermal conductivity of various nanofluids, Journal of Molecular Liquids, 265 (2018) 181-188.

DOI: 10.1016/j.molliq.2018.05.124

Google Scholar

[23] M.F. Modest, Chapter 10 - The Radiative Transfer Equation in Participating Media (RTE), in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.279-302.

DOI: 10.1016/b978-0-12-386944-9.50010-8

Google Scholar

[24] M.F. Modest, Chapter 1 - Fundamentals of Thermal Radiation, in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.1-30.

Google Scholar

[25] M.A. Davis, A.K. Dunn, Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media, Opt. Express, 23(13) (2015) 17145-17155.

DOI: 10.1364/oe.23.017145

Google Scholar

[26] J.C. Ramella-Roman, S.A. Prahl, S.L. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: Part I, Opt. Express, 13(12) (2005) 4420-4438.

DOI: 10.1364/opex.13.004420

Google Scholar

[27] H.H. Tynes, G.W. Kattawar, E.P. Zege, I.L. Katsev, A.S. Prikhach, L.I. Chaikovskaya, Monte carlo and multicomponent approximation methods for vector radiative transfer by use of effective mueller matrix calculations, Appl. Opt., 40(3) (2001) 400-412.

DOI: 10.1364/ao.40.000400

Google Scholar

[28] R. Vaillon, B.T. Wong, M.P. Mengüç, Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method, Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4) (2004) 383-394.

DOI: 10.1016/s0022-4073(03)00257-7

Google Scholar

[29] B. Wong, M.P. Mengüç, Comparison of Monte Carlo techniques to predict the propagation of a collimated beam in participating media, Numerical Heat Transfer, Part B, 42 (2002) 119-140.

DOI: 10.1080/10407790190053860

Google Scholar

[30] M.J. Weber, Handbook of Optical Materials, Taylor & Francis, (2002).

Google Scholar

[31] M.F. Modest, Chapter 12 - Radiative Properties of Particulate Media, in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.387-439.

DOI: 10.1016/b978-0-12-386944-9.50012-1

Google Scholar

[32] C.R. Wylie, L.C. Barrett, Advanced engineering mathematics, McGraw-Hill, (1995).

Google Scholar

[33] J.R. Howell, The Monte Carlo method in radiative heat transfer, Journal of Heat Transfer, 120(3) (1998) 547-560.

DOI: 10.1115/1.2824310

Google Scholar

[34] N. Metropolis, S. Ulam, The Monte Carlo Method, J. Am. Stat. Assoc., 44(247) (1949) 335-341.

Google Scholar

[35] M.F. Modest, Chapter 21 - The Monte Carlo Method for Participating Media, in: Radiative Heat Transfer (Third Edition), Academic Press, Boston, 2013, pp.694-723.

DOI: 10.1016/b978-0-12-386944-9.50021-2

Google Scholar