[1]
Wu. S, Li. J, Li. W, & Liu. S, Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys, Journal of Alloys and Compounds 814 (2020) 152282-152292.
DOI: 10.1016/j.jallcom.2019.152282
Google Scholar
[2]
Zhou. X, Ma. Z, Yu. L, Huang. Y, Li. H, & Liu. Y, Formation mechanisms of Y–Al–O complex oxides in 9Cr-ODS steels with Al addition, Journal of materials science, 54 (10) (2019) 7893-7907.
DOI: 10.1007/s10853-018-03293-8
Google Scholar
[3]
Guo. Y, Li. M, Li. P, Chen. C, Zhan. Q, Chang. Y, & Zhang. Y, Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys, Journal of Alloys and Compounds, 820 (2020) 153104-153120.
DOI: 10.1016/j.jallcom.2019.153104
Google Scholar
[4]
Chauhan. A, Bergner. F, Etienne. A, Aktaa. J, de Carlan. Y, Heintze. C, Litvinov. D, Hernandez-Mayoral. M, Onorbe. E, Radiguet. B, Ulbricht. A, Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9% Cr and Fe-14% Cr extruded bars, Journal of Nuclear Materials, 495 (2017) 6-19.
DOI: 10.1016/j.jnucmat.2017.07.060
Google Scholar
[5]
Xu. H, Li. W, Sha. X, Meng. J, Kang. C, Wang. W, Zang. X & Wang. Z, Effects of Zr addition on the microstructural stability of 15Cr-ODS steels under elevated-temperature annealing, Fusion Engineering and Design, 138 (2019) 231-238.
DOI: 10.1016/j.fusengdes.2018.11.048
Google Scholar
[6]
Kumar. D, Prakash. U, Dabhade. V. V, Laha. K, & Sakthivel. T, Development of oxide dispersion strengthened (ODS) ferritic steel through powder forging, Journal of Materials Engineering and Performance, 26.4 (2017) 1817-1824.
DOI: 10.1007/s11665-017-2573-2
Google Scholar
[7]
Toualbi. L, Ratti. M, André. G, Onimus. F, & De Carlan. Y, Use of neutron and X-ray diffraction to study the precipitation mechanisms of oxides in ODS materials, Journal of Nuclear Materials, 417 (1-3) (2011) 225-228.
DOI: 10.1016/j.jnucmat.2010.12.071
Google Scholar
[8]
Auger. M. A, Hoelzer. D. T, Field. K. G, & Moody. M. P, Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy, Journal of Nuclear Materials, 528 (2020) 151852-151860.
DOI: 10.1016/j.jnucmat.2019.151852
Google Scholar
[9]
Santra. S, Amirthapandian. S, Balaji. S, Panigrahi. B. K, Serruys. Y, & Robertson. C, Ion irradiation stability of oxide nano-particles in ODS alloys: TEM studies, Journal of Nuclear Materials, 528 (2020) 151861-151869.
DOI: 10.1016/j.jnucmat.2019.151861
Google Scholar
[10]
Xu. S, Zhou. Z, Long. F, Jia. H, Guo. N, Yao. Z, & Daymond. M. R, Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe–9Cr–Al ODS steel with high Al addition, Materials Science and Engineering, A 739 (2019) 45-52.
DOI: 10.1016/j.msea.2018.09.111
Google Scholar
[11]
He. P, Hoffmann. J, & Möslang. A, Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM, Journal of Nuclear Materials, 501 (2018) 381-387.
DOI: 10.1016/j.jnucmat.2018.01.021
Google Scholar
[12]
Massey. C. P, Dryepondt. S. N, Edmondson. P. D, Terrani. K. A, & Zinkle. S. J, Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys, Journal of Nuclear Materials, 512 (2018) 227-238.
DOI: 10.1016/j.jnucmat.2018.10.017
Google Scholar
[13]
Wang. M, Zhou. Z, Sun. H, Hu. H, & Li. S, Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel, Journal of Nuclear Materials, 430(1-3) (2012) 259-263.
DOI: 10.1016/j.jnucmat.2012.07.014
Google Scholar
[14]
Saber. M, Xu. W, Li. L, Zhu. Y, Koch. C. C, & Scattergood. R. O, Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM, Journal of Nuclear Materials, 452(1-3) (2014) 223-229.
DOI: 10.1016/j.jnucmat.2014.05.014
Google Scholar
[15]
Liu. T, Shen. H, Wang. C, & Chou. W, Structure evolution of Y2O3 nanoparticle/Fe composite during mechanical milling and annealing, Progress in Natural Science: Materials International, 23(4) (2013) 434-439.
DOI: 10.1016/j.pnsc.2013.06.009
Google Scholar
[16]
Raghavendra. K. G, Dasgupta. A, Bhaskar. P, Jayasankar. K, Athreya. C. N, Panda. P, Saroja. S, Subramanya Sarma. V & Ramaseshan. R, Synthesis and characterization of Fe-15 wt.% ZrO2 nanocomposite powders by mechanical milling, Powder technology, 287 (2016) 190-200.
DOI: 10.1016/j.powtec.2015.10.003
Google Scholar
[17]
Gharsallah. H. I, Makhlouf. T, Escoda. L, Suñol. J. J, & Khitouni. M, Magnetic and microstructural properties of nanocrystalline Fe-25 at% Al and Fe-25 at% Al+ 0.2 at% B alloys prepared by mechanical alloying process, The European Physical Journal Plus, 131(4) (2016) 119.
DOI: 10.1140/epjp/i2016-16119-2
Google Scholar
[18]
Li. Z, Lu. Z, Xie. R, Lu. C, Shi. Y, & Liu. C, Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering, Fusion Engineering and Design, 121 (2017) 159-166.
DOI: 10.1016/j.fusengdes.2017.06.039
Google Scholar
[19]
Pasebani. S, Charit. I, Wu. Y. Q, Butt. D. P, & Cole, J. I, Mechanical alloying of lanthana-bearing nanostructured ferritic steels, Acta Materialia, 61(15) (2013) 5605-5617.
DOI: 10.1016/j.actamat.2013.06.002
Google Scholar
[20]
Shariati. A, Ghabussi. A, Habibi. M, Safarpour. H, Safarpour. M, Tounsi A, & Safa. M, Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation, Thin-Walled Structures, 154 (2020) 106840-106857.
DOI: 10.1016/j.tws.2020.106840
Google Scholar
[21]
Draoui. A, Zidour. M, Tounsi. A, & Adim. B, Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), Journal of Nano Research (57) (2019) 117-135.
DOI: 10.4028/www.scientific.net/jnanor.57.117
Google Scholar
[22]
Ferby. V. A, Raj. A. M. E, & Bououdina. M, Structure and morphology of synthesized lanthanum hydroxide [La (OH) 3] nanocrystalline powders: study on fuel to oxidant ratio, Journal of the Australian Ceramic Society (2019) 1-10.
DOI: 10.1007/s41779-019-00389-5
Google Scholar
[23]
Coutinho. P. V, Cunha. F, & Barrozo. P, Structural, vibrational and magnetic properties of the orthoferrites LaFeO3 and YFeO3: A comparative study, Solid State Communications 252 (2017) 59-63.
DOI: 10.1016/j.ssc.2017.01.019
Google Scholar
[24]
Cristóbal. A. A, Botta. P. M, Aglietti. E. F, Conconi. M. S, Bercoff. P. G, & López. J. P, Synthesis, structure and magnetic properties of distorted YxLa1− xFeO3: Effects of mechanochemical activation and composition, Materials Chemistry and Physics, 130 (3) (2011) 1275-1279.
DOI: 10.1016/j.matchemphys.2011.09.014
Google Scholar
[25]
Kucharczyk. B, Okal. J, Tylus. W, Winiarski. J, & Szczygieł. B, The effect of the calcination temperature of LaFeO3 precursors on the properties and catalytic activity of perovskite in methane oxidation, Ceramics International, 45(2) (2019) 2779-2788.
DOI: 10.1016/j.ceramint.2018.07.299
Google Scholar
[26]
Xue. F, Tian. Y, Jian. G, Li. W, Tang. L, & Guo, P, Ferroelectromagnetic pseudocubic BiFeO3-LaFeO3-PbFeO2. 5: Leakage current, dielectric, and multiferroic properties at room temperature, Ceramics International, 46(1) (2020) 930-936.
DOI: 10.1016/j.ceramint.2019.09.053
Google Scholar
[27]
Idrees. M, Nadeem. M, Siddiqi. S. A, Ahmad. R, Hussnain. A, & Mehmood. M, The organic residue and synthesis of LaFeO3 by combustion of citrate and nitrate precursors, Materials Chemistry and Physics, 162 (2015) 652-658.
DOI: 10.1016/j.matchemphys.2015.06.039
Google Scholar
[28]
Jagadeeshwaran. C, Selvadurai. A. P. B, Pazhanivelu. V, & Murugaraj. R, Structure, Optical and Magnetic behavior of LaFeO3 and LaFe0. 9Ni0. 1O3-d by combustion method, International Journal of Innovative Research in Science & Engineering, (2013) 2347-3207.
Google Scholar
[29]
Phokha. S, Pinitsoontorn. S, Rujirawat. S, & Maensiri. S, Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles, Physica B: Condensed Matter, 476 (2015) 55-60.
DOI: 10.1016/j.physb.2015.07.021
Google Scholar
[30]
Sharma. N, Sharma. S. K, and Sachdev. K, Effect of precursors on the morphology and surface area of LaFeO3, Ceramics International, 45(6) (2019): 7217-7225.
DOI: 10.1016/j.ceramint.2019.01.001
Google Scholar
[31]
Sorescu. M, Xu. T, & Hannan. A, Initial stage growth mechanism of LaFeO3 perovskite through magnetomechanical ball-milling of lanthanum and iron oxides, American Journal of Materials Science, 1(1) (2011) 56-66.
DOI: 10.1007/s10853-011-5625-2
Google Scholar
[32]
Sazelee. N. A, Idris. N. H, Din. M. M, Yahya. M. S, Ali. N. A, & Ismail. M, LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results in Physics, 16 (2020) 102844.
DOI: 10.1016/j.rinp.2019.102844
Google Scholar
[33]
Anajafi. Z, Naseri. M, and Neri. G, Optical, Magnetic and Gas Sensing Properties of LaFeO 3 Nanoparticles Synthesized by Different Chemical Methods, Journal of Electronic Materials, 48(10) (2019) 6503-6511.
DOI: 10.1007/s11664-019-07436-8
Google Scholar
[34]
Patil. U, Hong. S. J, & Suryanarayana. C, An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition, Journal of alloys and compounds, 389(1-2) (2005) 121-126.
DOI: 10.1016/j.jallcom.2004.08.020
Google Scholar
[35]
Slimi. M, Azabou. M, Suñol. J. J, Khitouni. M, & Greneche. J. M, Structural characterization and Mössbauer studies of nanocrystalline Fe60Ni20Cr10B10 alloy prepared by high energy ball milling, Journal of Magnetism and Magnetic Materials, 393 (2015) 157-164.
DOI: 10.1016/j.jmmm.2015.05.034
Google Scholar
[36]
Alleg. S, Brahimi. A, Azzaza. S, Souilah. S, Zergoug. M, Suňol. J. J, & Greneche. J. M, X-ray diffraction, Mössbauer spectrometry and thermal studies of the mechanically alloyed (Fe1− xMnx) 2P powders, Advanced Powder Technology, 29(2) (2018) 257-265.
DOI: 10.1016/j.apt.2017.11.009
Google Scholar
[37]
Zerniz. N, Azzaza. S, Chater. R, Abbas. H, Bououdina. M, & Bouchelaghem. W, Magnetic and structural properties of nanostructured Fe–20Al–2Cr powder mixtures, Materials Characterization, 100 (2015) 21-30.
DOI: 10.1016/j.matchar.2014.12.010
Google Scholar
[38]
Azzaza. S, Alleg. S, & Su J. J, Phase transformation in the ball milled Fe31Co31Nb8B30 powders, Advances in Materials Physics and Chemistry, 3.01 (2013). 90.
Google Scholar
[39]
Brahimi. A, Alleg. S, Yamkane. Z, Lassri. H, Suňol. J. J, & Hlil. E. K, Effect of the Mn/Fe Ratio on the Microstructure and Magnetic Properties in the Powder Form (Fe 1− x Mn x) 2 P System, Journal of Superconductivity and Novel Magnetism, 30(11) (2017) 3045-3054.
DOI: 10.1007/s10948-017-4151-0
Google Scholar
[40]
Li. W, Hao. T, Gao. R, Wang. X, Zhang. T, Fang. Q, & Liu. C, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder technology, 319 (2017) 172-182.
DOI: 10.1016/j.powtec.2017.06.041
Google Scholar
[41]
Rajulapati. S. K, Saggurthi. A. D, Yadav. A. S, & Meka. S. R, Crystallite size and microstrain in mechanically alloyed and heat treated Fe-25 wt.% Y2O3, Materials Today: Proceedings, 5(9) (2018) 16904-16911.
DOI: 10.1016/j.matpr.2018.04.093
Google Scholar
[42]
Alleg. S, Azzaza. S, Bensalem. R, Suñol. J. J, Khene. S, & Fillion. G, Magnetic and structural studies of mechanically alloyed (Fe50Co50) 62Nb8B30 powder mixtures, Journal of Alloys and Compounds, 482(1-2) (2009) 86-89.
DOI: 10.1016/j.jallcom.2009.03.189
Google Scholar
[43]
Cheng. J, Navrotsky. A, Zhou. X. D, & Anderson. H. U, Enthalpies of Formation of LaMO 3 Perovskites (M= Cr, Fe, Co, and Ni), Journal of materials research, 20(1) (2005) 191-200.
DOI: 10.1557/jmr.2005.0018
Google Scholar
[44]
Suryanarayana. C, Mechanical alloying and milling, Progress in materials science, 46(1-2) (2001) 1-184.
Google Scholar
[45]
Kimizuka. N, & Katsura. T, The standard free energy of the formation of LaFeO3 at 1204 °C, Bulletin of the Chemical Society of Japan, 47(7) (1974) 1801-1802.
DOI: 10.1246/bcsj.47.1801
Google Scholar
[46]
Chabi. T, Bensebaa. N, Alleg. S, Azzaza. S, Suñol. J. J, & Hlil. E. K, Effect of the Boron Content on the Amorphization Process and Magnetic Properties of the Mechanically Alloyed Fe 92− x Nb 8 B x Powders, Journal of Superconductivity and Novel Magnetism, 32(4) (2019) 893-901.
DOI: 10.1007/s10948-018-4734-4
Google Scholar
[47]
Alleg. S, Kartout. S, Ibrir. M, Azzaza. S, Fenineche. N. E, & Suñol. J. J, Magnetic, structural and thermal properties of the Finemet-type powders prepared by mechanical alloying, Journal of Physics and Chemistry of Solids, 74(4) (2013) 550-557.
DOI: 10.1016/j.jpcs.2012.12.002
Google Scholar
[48]
Fleming. P, Farrell. R. A, Holmes. J. D, & Morris. M. A, The rapid formation of La (OH) 3 from La2O3 powders on exposureto water vapor, Journal of the American Ceramic Society, 93(4) (2010) 1187-1194.
DOI: 10.1111/j.1551-2916.2009.03564.x
Google Scholar
[49]
Chaira. D, Phase transformation and microstructure study of nano-structured austenitic and ferritic stainless-steel powders prepared by planetary milling, Powder Technology, 259 (2014) 125-136.
DOI: 10.1016/j.powtec.2014.03.061
Google Scholar