Structure Evolution of La(OH)3 /Fe Composite during Ball Milling

Article Preview

Abstract:

Fe-10wt% La (OH)3 composite powders have been fabricated by ball milling, under argon atmosphere for milling periods of 0, 5 and 10 h, respectively. Changes in structural, morphological, thermal and magnetic properties of the powders during mechanical alloying and during subsequent annealing have been examined by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). XRD results: showed the formation of new phases (Fe and LaFeO3 perovskite) created through the ball milling. The results showed that the crystalline size of ball milled powders decreased with increasing the milling time. In fact, after 10 h of ball milling, La (OH)3 changes from nanostructure in amorphous structure. The magnetic measurements display a distinct saturation magnetization and coercivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-134

Citation:

Online since:

December 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wu. S, Li. J, Li. W, & Liu. S, Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys, Journal of Alloys and Compounds 814 (2020) 152282-152292.

DOI: 10.1016/j.jallcom.2019.152282

Google Scholar

[2] Zhou. X, Ma. Z, Yu. L, Huang. Y, Li. H, & Liu. Y, Formation mechanisms of Y–Al–O complex oxides in 9Cr-ODS steels with Al addition, Journal of materials science, 54 (10) (2019) 7893-7907.

DOI: 10.1007/s10853-018-03293-8

Google Scholar

[3] Guo. Y, Li. M, Li. P, Chen. C, Zhan. Q, Chang. Y, & Zhang. Y, Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys, Journal of Alloys and Compounds, 820 (2020) 153104-153120.

DOI: 10.1016/j.jallcom.2019.153104

Google Scholar

[4] Chauhan. A, Bergner. F, Etienne. A, Aktaa. J, de Carlan. Y, Heintze. C, Litvinov. D, Hernandez-Mayoral. M, Onorbe. E, Radiguet. B, Ulbricht. A, Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9% Cr and Fe-14% Cr extruded bars, Journal of Nuclear Materials, 495 (2017) 6-19.

DOI: 10.1016/j.jnucmat.2017.07.060

Google Scholar

[5] Xu. H, Li. W, Sha. X, Meng. J, Kang. C, Wang. W, Zang. X & Wang. Z, Effects of Zr addition on the microstructural stability of 15Cr-ODS steels under elevated-temperature annealing, Fusion Engineering and Design, 138 (2019) 231-238.

DOI: 10.1016/j.fusengdes.2018.11.048

Google Scholar

[6] Kumar. D, Prakash. U, Dabhade. V. V, Laha. K, & Sakthivel. T, Development of oxide dispersion strengthened (ODS) ferritic steel through powder forging, Journal of Materials Engineering and Performance, 26.4 (2017) 1817-1824.

DOI: 10.1007/s11665-017-2573-2

Google Scholar

[7] Toualbi. L, Ratti. M, André. G, Onimus. F, & De Carlan. Y, Use of neutron and X-ray diffraction to study the precipitation mechanisms of oxides in ODS materials, Journal of Nuclear Materials, 417 (1-3) (2011) 225-228.

DOI: 10.1016/j.jnucmat.2010.12.071

Google Scholar

[8] Auger. M. A, Hoelzer. D. T, Field. K. G, & Moody. M. P, Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy, Journal of Nuclear Materials, 528 (2020) 151852-151860.

DOI: 10.1016/j.jnucmat.2019.151852

Google Scholar

[9] Santra. S, Amirthapandian. S, Balaji. S, Panigrahi. B. K, Serruys. Y, & Robertson. C, Ion irradiation stability of oxide nano-particles in ODS alloys: TEM studies, Journal of Nuclear Materials, 528 (2020) 151861-151869.

DOI: 10.1016/j.jnucmat.2019.151861

Google Scholar

[10] Xu. S, Zhou. Z, Long. F, Jia. H, Guo. N, Yao. Z, & Daymond. M. R, Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe–9Cr–Al ODS steel with high Al addition, Materials Science and Engineering, A 739 (2019) 45-52.

DOI: 10.1016/j.msea.2018.09.111

Google Scholar

[11] He. P, Hoffmann. J, & Möslang. A, Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM, Journal of Nuclear Materials, 501 (2018) 381-387.

DOI: 10.1016/j.jnucmat.2018.01.021

Google Scholar

[12] Massey. C. P, Dryepondt. S. N, Edmondson. P. D, Terrani. K. A, & Zinkle. S. J, Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys, Journal of Nuclear Materials, 512 (2018) 227-238.

DOI: 10.1016/j.jnucmat.2018.10.017

Google Scholar

[13] Wang. M, Zhou. Z, Sun. H, Hu. H, & Li. S, Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel, Journal of Nuclear Materials, 430(1-3) (2012) 259-263.

DOI: 10.1016/j.jnucmat.2012.07.014

Google Scholar

[14] Saber. M, Xu. W, Li. L, Zhu. Y, Koch. C. C, & Scattergood. R. O, Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM, Journal of Nuclear Materials, 452(1-3) (2014) 223-229.

DOI: 10.1016/j.jnucmat.2014.05.014

Google Scholar

[15] Liu. T, Shen. H, Wang. C, & Chou. W, Structure evolution of Y2O3 nanoparticle/Fe composite during mechanical milling and annealing, Progress in Natural Science: Materials International, 23(4) (2013) 434-439.

DOI: 10.1016/j.pnsc.2013.06.009

Google Scholar

[16] Raghavendra. K. G, Dasgupta. A, Bhaskar. P, Jayasankar. K, Athreya. C. N, Panda. P, Saroja. S, Subramanya Sarma. V & Ramaseshan. R, Synthesis and characterization of Fe-15 wt.% ZrO2 nanocomposite powders by mechanical milling, Powder technology, 287 (2016) 190-200.

DOI: 10.1016/j.powtec.2015.10.003

Google Scholar

[17] Gharsallah. H. I, Makhlouf. T, Escoda. L, Suñol. J. J, & Khitouni. M, Magnetic and microstructural properties of nanocrystalline Fe-25 at% Al and Fe-25 at% Al+ 0.2 at% B alloys prepared by mechanical alloying process, The European Physical Journal Plus, 131(4) (2016) 119.

DOI: 10.1140/epjp/i2016-16119-2

Google Scholar

[18] Li. Z, Lu. Z, Xie. R, Lu. C, Shi. Y, & Liu. C, Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering, Fusion Engineering and Design, 121 (2017) 159-166.

DOI: 10.1016/j.fusengdes.2017.06.039

Google Scholar

[19] Pasebani. S, Charit. I, Wu. Y. Q, Butt. D. P, & Cole, J. I, Mechanical alloying of lanthana-bearing nanostructured ferritic steels, Acta Materialia, 61(15) (2013) 5605-5617.

DOI: 10.1016/j.actamat.2013.06.002

Google Scholar

[20] Shariati. A, Ghabussi. A, Habibi. M, Safarpour. H, Safarpour. M, Tounsi A, & Safa. M, Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation, Thin-Walled Structures, 154 (2020) 106840-106857.

DOI: 10.1016/j.tws.2020.106840

Google Scholar

[21] Draoui. A, Zidour. M, Tounsi. A, & Adim. B, Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), Journal of Nano Research (57) (2019) 117-135.

DOI: 10.4028/www.scientific.net/jnanor.57.117

Google Scholar

[22] Ferby. V. A, Raj. A. M. E, & Bououdina. M, Structure and morphology of synthesized lanthanum hydroxide [La (OH) 3] nanocrystalline powders: study on fuel to oxidant ratio, Journal of the Australian Ceramic Society (2019) 1-10.

DOI: 10.1007/s41779-019-00389-5

Google Scholar

[23] Coutinho. P. V, Cunha. F, & Barrozo. P, Structural, vibrational and magnetic properties of the orthoferrites LaFeO3 and YFeO3: A comparative study, Solid State Communications 252 (2017) 59-63.

DOI: 10.1016/j.ssc.2017.01.019

Google Scholar

[24] Cristóbal. A. A, Botta. P. M, Aglietti. E. F, Conconi. M. S, Bercoff. P. G, & López. J. P, Synthesis, structure and magnetic properties of distorted YxLa1− xFeO3: Effects of mechanochemical activation and composition, Materials Chemistry and Physics, 130 (3) (2011) 1275-1279.

DOI: 10.1016/j.matchemphys.2011.09.014

Google Scholar

[25] Kucharczyk. B, Okal. J, Tylus. W, Winiarski. J, & Szczygieł. B, The effect of the calcination temperature of LaFeO3 precursors on the properties and catalytic activity of perovskite in methane oxidation, Ceramics International, 45(2) (2019) 2779-2788.

DOI: 10.1016/j.ceramint.2018.07.299

Google Scholar

[26] Xue. F, Tian. Y, Jian. G, Li. W, Tang. L, & Guo, P, Ferroelectromagnetic pseudocubic BiFeO3-LaFeO3-PbFeO2. 5: Leakage current, dielectric, and multiferroic properties at room temperature, Ceramics International, 46(1) (2020) 930-936.

DOI: 10.1016/j.ceramint.2019.09.053

Google Scholar

[27] Idrees. M, Nadeem. M, Siddiqi. S. A, Ahmad. R, Hussnain. A, & Mehmood. M, The organic residue and synthesis of LaFeO3 by combustion of citrate and nitrate precursors, Materials Chemistry and Physics, 162 (2015) 652-658.

DOI: 10.1016/j.matchemphys.2015.06.039

Google Scholar

[28] Jagadeeshwaran. C, Selvadurai. A. P. B, Pazhanivelu. V, & Murugaraj. R, Structure, Optical and Magnetic behavior of LaFeO3 and LaFe0. 9Ni0. 1O3-d by combustion method, International Journal of Innovative Research in Science & Engineering, (2013) 2347-3207.

Google Scholar

[29] Phokha. S, Pinitsoontorn. S, Rujirawat. S, & Maensiri. S, Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles, Physica B: Condensed Matter, 476 (2015) 55-60.

DOI: 10.1016/j.physb.2015.07.021

Google Scholar

[30] Sharma. N, Sharma. S. K, and Sachdev. K, Effect of precursors on the morphology and surface area of LaFeO3, Ceramics International, 45(6) (2019): 7217-7225.

DOI: 10.1016/j.ceramint.2019.01.001

Google Scholar

[31] Sorescu. M, Xu. T, & Hannan. A, Initial stage growth mechanism of LaFeO3 perovskite through magnetomechanical ball-milling of lanthanum and iron oxides, American Journal of Materials Science, 1(1) (2011) 56-66.

DOI: 10.1007/s10853-011-5625-2

Google Scholar

[32] Sazelee. N. A, Idris. N. H, Din. M. M, Yahya. M. S, Ali. N. A, & Ismail. M, LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results in Physics, 16 (2020) 102844.

DOI: 10.1016/j.rinp.2019.102844

Google Scholar

[33] Anajafi. Z, Naseri. M, and Neri. G, Optical, Magnetic and Gas Sensing Properties of LaFeO 3 Nanoparticles Synthesized by Different Chemical Methods, Journal of Electronic Materials, 48(10) (2019) 6503-6511.

DOI: 10.1007/s11664-019-07436-8

Google Scholar

[34] Patil. U, Hong. S. J, & Suryanarayana. C, An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition, Journal of alloys and compounds, 389(1-2) (2005) 121-126.

DOI: 10.1016/j.jallcom.2004.08.020

Google Scholar

[35] Slimi. M, Azabou. M, Suñol. J. J, Khitouni. M, & Greneche. J. M, Structural characterization and Mössbauer studies of nanocrystalline Fe60Ni20Cr10B10 alloy prepared by high energy ball milling, Journal of Magnetism and Magnetic Materials, 393 (2015) 157-164.

DOI: 10.1016/j.jmmm.2015.05.034

Google Scholar

[36] Alleg. S, Brahimi. A, Azzaza. S, Souilah. S, Zergoug. M, Suňol. J. J, & Greneche. J. M, X-ray diffraction, Mössbauer spectrometry and thermal studies of the mechanically alloyed (Fe1− xMnx) 2P powders, Advanced Powder Technology, 29(2) (2018) 257-265.

DOI: 10.1016/j.apt.2017.11.009

Google Scholar

[37] Zerniz. N, Azzaza. S, Chater. R, Abbas. H, Bououdina. M, & Bouchelaghem. W, Magnetic and structural properties of nanostructured Fe–20Al–2Cr powder mixtures, Materials Characterization, 100 (2015) 21-30.

DOI: 10.1016/j.matchar.2014.12.010

Google Scholar

[38] Azzaza. S, Alleg. S, & Su J. J, Phase transformation in the ball milled Fe31Co31Nb8B30 powders, Advances in Materials Physics and Chemistry, 3.01 (2013). 90.

Google Scholar

[39] Brahimi. A, Alleg. S, Yamkane. Z, Lassri. H, Suňol. J. J, & Hlil. E. K, Effect of the Mn/Fe Ratio on the Microstructure and Magnetic Properties in the Powder Form (Fe 1− x Mn x) 2 P System, Journal of Superconductivity and Novel Magnetism, 30(11) (2017) 3045-3054.

DOI: 10.1007/s10948-017-4151-0

Google Scholar

[40] Li. W, Hao. T, Gao. R, Wang. X, Zhang. T, Fang. Q, & Liu. C, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder technology, 319 (2017) 172-182.

DOI: 10.1016/j.powtec.2017.06.041

Google Scholar

[41] Rajulapati. S. K, Saggurthi. A. D, Yadav. A. S, & Meka. S. R, Crystallite size and microstrain in mechanically alloyed and heat treated Fe-25 wt.% Y2O3,  Materials Today: Proceedings, 5(9) (2018) 16904-16911.

DOI: 10.1016/j.matpr.2018.04.093

Google Scholar

[42] Alleg. S, Azzaza. S, Bensalem. R, Suñol. J. J, Khene. S, & Fillion. G, Magnetic and structural studies of mechanically alloyed (Fe50Co50) 62Nb8B30 powder mixtures, Journal of Alloys and Compounds, 482(1-2) (2009) 86-89.

DOI: 10.1016/j.jallcom.2009.03.189

Google Scholar

[43] Cheng. J, Navrotsky. A, Zhou. X. D, & Anderson. H. U, Enthalpies of Formation of LaMO 3 Perovskites (M= Cr, Fe, Co, and Ni), Journal of materials research, 20(1) (2005) 191-200.

DOI: 10.1557/jmr.2005.0018

Google Scholar

[44] Suryanarayana. C, Mechanical alloying and milling, Progress in materials science, 46(1-2) (2001) 1-184.

Google Scholar

[45] Kimizuka. N, & Katsura. T, The standard free energy of the formation of LaFeO3 at 1204 °C, Bulletin of the Chemical Society of Japan, 47(7) (1974) 1801-1802.

DOI: 10.1246/bcsj.47.1801

Google Scholar

[46] Chabi. T, Bensebaa. N, Alleg. S, Azzaza. S, Suñol. J. J, & Hlil. E. K, Effect of the Boron Content on the Amorphization Process and Magnetic Properties of the Mechanically Alloyed Fe 92− x Nb 8 B x Powders, Journal of Superconductivity and Novel Magnetism, 32(4) (2019) 893-901.

DOI: 10.1007/s10948-018-4734-4

Google Scholar

[47] Alleg. S, Kartout. S, Ibrir. M, Azzaza. S, Fenineche. N. E, & Suñol. J. J, Magnetic, structural and thermal properties of the Finemet-type powders prepared by mechanical alloying, Journal of Physics and Chemistry of Solids, 74(4) (2013) 550-557.

DOI: 10.1016/j.jpcs.2012.12.002

Google Scholar

[48] Fleming. P, Farrell. R. A, Holmes. J. D, & Morris. M. A, The rapid formation of La (OH) 3 from La2O3 powders on exposureto water vapor, Journal of the American Ceramic Society, 93(4) (2010) 1187-1194.

DOI: 10.1111/j.1551-2916.2009.03564.x

Google Scholar

[49] Chaira. D, Phase transformation and microstructure study of nano-structured austenitic and ferritic stainless-steel powders prepared by planetary milling, Powder Technology, 259 (2014) 125-136.

DOI: 10.1016/j.powtec.2014.03.061

Google Scholar