[1]
L. Zhu, W. Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensors and Actuators A: Physical. 267 (2017) 242-261.
DOI: 10.1016/j.sna.2017.10.021
Google Scholar
[2]
S. Öztürk, N.Kılınç, N.Taşaltın, Z.Z. Öztürk, Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures. 44 (2012) 1062-1065.
DOI: 10.1016/j.physe.2011.01.015
Google Scholar
[3]
S. Rackauskas, O. Klimova, H. Jiang, A. Nikitenko, K. A. Chernenko, S. D. Shandakov, E. I. Kauppinen, O. V. Tolochko, A. G. Nasibulin, A novel method for continuous synthesis of ZnO tetrapods, The Journal of Physical Chemistry C. 119 (2015) 16366-16373.
DOI: 10.1021/acs.jpcc.5b03702
Google Scholar
[4]
R A. Rodrigues, M. Castegnaro, J. Arguello, M. Alves, J. Morais, Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film, Applied Surface Science. 402 (2017) 136-141.
DOI: 10.1016/j.apsusc.2017.01.052
Google Scholar
[5]
P. Van Thanh, H. H. Mai, N. V. Tuyen, S. C. Doanh, N.C. Viet, Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor, Journal of Electronic Materials. 46 (2017) 3732-3737.
DOI: 10.1007/s11664-017-5369-0
Google Scholar
[6]
F. Meng; S. Ge, Y. Jia, B. Sun, Y. Sun, C. Wang, H. Wu, Z. Jin, M. Li, Interlaced nanoflake-assembled flower-like hierarchical ZnO microspheres prepared by bisolvents and their sensing properties to ethanol, Journal of Alloys and Compounds. 632 (2015) 645-650.
DOI: 10.1016/j.jallcom.2015.01.289
Google Scholar
[7]
J. Fan, T. Li, H. Heng, Hydrothermal growth of ZnO microrods on ITO-coated glass substrate, Applied Physics A. 119 (2015) 185-192.
DOI: 10.1007/s00339-014-8946-6
Google Scholar
[8]
K. Gautam, I. Singh, P. Bhatnagar, K. R. Peta, The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods, Superlattices and Microstructures. 93 (2016) 101-108.
DOI: 10.1016/j.spmi.2016.03.001
Google Scholar
[9]
K. X. Zhang, X. Wen, C. B. Yao, J. Li, M. Zhang, Q. H. Li, W. J. Sun, J.D. Wu, Synthesis, structural and optical properties of silver nanoparticles uniformly decorated ZnO nanowires, Chemical Physics Letters. 698 (2018) 147-151.
DOI: 10.1016/j.cplett.2018.03.018
Google Scholar
[10]
D. Zhang, G. Dong, Y. Cao, Y. Zhang , Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method, J Colloid Interface Sci.528 (2018) 184-191.
DOI: 10.1016/j.jcis.2018.05.085
Google Scholar
[11]
F. Ghasemi, Z. Kordrostami, S. Hamedi, Nanorod pH Sensor Based on an Extended Gate MOSFET, In 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE. (2019) pp.101-103.
DOI: 10.1109/iraniancee.2019.8786647
Google Scholar
[12]
L. Masihzadeh, Z. Kordrostami, B. Pourabbas, Fabrication of E-coli bacteria Biosensor and Measurement under UV radiation, In 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE. (2019) pp.23-25.
DOI: 10.1109/iraniancee.2019.8786369
Google Scholar
[13]
M. r. Nourgostar, Z. Kordrostami, Non-Enzymatic Optical Glucose Biosensor Using Grown ZnO Nanorods on Printed Circuit Boards, Iranian Conference on Optics and Photonics and Iranian Conference on Photonics Engineering and Technology. 25 (2019) 1097-1100.
Google Scholar
[14]
M. G. Al-Fandi, R. J. Oweis, R. H. Hayajneh, I. R. Alhamdan, R. A. Alabed, O. F. Al-Rawi, Direct electrochemical bacterial sensor using ZnO nanorods disposable electrode, Sensor Review. (2018).
DOI: 10.1108/sr-06-2017-0117
Google Scholar
[15]
K. Dutta, N. Banerjee, H. Mishra, P. Bhattacharyya, Performance Improvement of Pd/ZnO-NR/Si MIS Gas Sensor Device in Capacitive Mode: Correlation With Equivalent-Circuit Elements, IEEE Transactions on Electron Devices. 63 (2016) 1266-1273.
DOI: 10.1109/ted.2016.2520020
Google Scholar
[16]
D. Punetha, S. K. Pandey, CO Gas Sensor Based on E-Beam Evaporated ZnO, MgZnO, and CdZnO Thin Films: A Comparative Study, IEEE Sensors Journal. 19 (2019) 2450-2457.
DOI: 10.1109/jsen.2018.2890007
Google Scholar
[17]
D. Zhang, G. Dong, Z. Wu, W. Pan, X. Fan, Liquefied Petroleum Gas Sensing Properties of ZnO/PPy/PbS QDs Nanocomposite Prepared by Self-Assembly Combining With SILAR Method, IEEE Sensors Journal. 19 (2019) 2855-2862.
DOI: 10.1109/jsen.2018.2890074
Google Scholar
[18]
A. J. Gimenez, G. Luna-Barcenas, I. C. Sanchez, J. M. Yanez-Limon, Paper-Based ZnO Oxygen Sensor, IEEE Sensors Journal. 15 (2015) 1246-1251.
DOI: 10.1109/jsen.2014.2361780
Google Scholar
[19]
T. Tharsika, M. Thanihaichelvan, A. Haseeb, S. Akbar, Highly Sensitive and Selective Ethanol Sensor Based on ZnO Nanorod on SnO2 Thin Film Fabricated by Spray Pyrolysis, Nano-Hetero-Structures for Chemical Sensing: Opportunities and Challenges. (2020).
DOI: 10.3389/fmats.2019.00122
Google Scholar
[20]
B. Mandal,Aaryashree, R. Singh, S. Mukherjee, Highly Selective and Sensitive Methanol Sensor Using Rose-Like ZnO Microcube and MoO3 Micrograss-Based Composite, IEEE Sensors Journal. 18 (2018) 2659-2666.
DOI: 10.1109/jsen.2018.2803682
Google Scholar
[21]
J.H. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Pd functionalization on ZnO nanowires for enhanced sensitivity and selectivity to hydrogen gas, Sensors and Actuators B: Chemical. 297 (2019).
DOI: 10.1016/j.snb.2019.126693
Google Scholar
[22]
M. Yang, S. Zhang, F. Qu, S. Gong, C. Wang, L. Qiu, M. Yang, W. Cheng, High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles, Journal of Alloys and Compounds. 797 (2019) 246-252.
DOI: 10.1016/j.jallcom.2019.05.101
Google Scholar
[23]
J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3, J Hazard Mater.381(2020) 120919.
DOI: 10.1016/j.jhazmat.2019.120919
Google Scholar
[24]
J. H. Kim, J. H. Lee, Y. Park, J. Y. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Toluene- and benzene-selective gas sensors based on Pt- and Pd-functionalized ZnO nanowires in self-heating mode, Sensors and Actuators B: Chemical. 294 (2019) 78-88.
DOI: 10.1016/j.snb.2019.05.032
Google Scholar
[25]
Y. Wang, X. N. Meng, J. L. Cao, Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets, J Hazard Mater.381 (2020) 120944.
DOI: 10.1016/j.jhazmat.2019.120944
Google Scholar
[26]
P. Salimi kuchi, H. Roshan, M. H. Sheikhi, A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties, Journal of Alloys and Compounds. 816 (2020) 816.
DOI: 10.1016/j.jallcom.2019.152666
Google Scholar
[27]
A. Mirzaei, S. Park, H. Kheel, G.J. Sun, S. Lee, C. Lee, ZnO-capped nanorod gas sensors, Ceramics International. 42 (2016) 6187-6197.
DOI: 10.1016/j.ceramint.2015.12.179
Google Scholar
[28]
S. J. Young, Z. D. Lin, Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate, Microsystem Technologies. 24 (2016) 55-58.
DOI: 10.1007/s00542-016-3154-2
Google Scholar
[29]
Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement, Nanoscale. 6 (2014) 4604-4610.
DOI: 10.1039/c3nr06809a
Google Scholar
[30]
D. Maity, K. Rajavel, R. T. R. Kumar, Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor, Sensors and Actuators B: Chemical.261(2018) 297-306.
DOI: 10.1016/j.snb.2018.01.152
Google Scholar
[31]
D. Acharyya, S. Ghosal, R. Roychaudhuri, P. Bhattacharyya, Hierarchical MnO 2 Nanoflowers Based Efficient Room Temperature Alcohol Sensor, In 2018 IEEE SENSORS. IEEE. (2018) pp.1-4.
DOI: 10.1109/icsens.2018.8589597
Google Scholar
[32]
B. Bhowmik, K. Dutta, P. Bhattacharyya, An Efficient Room Temperature Ethanol Sensor Device Based on p-n Homojunction of TiO2 Nanostructures, IEEE Transactions on Electron Devices. 66(2019) 1063-1068.
DOI: 10.1109/ted.2018.2885360
Google Scholar