Fabrication of Room Temperature Resistive Ethanol Gas Sensor Based on ZnO Nanorods Decorated with PbS Nanoparticles

Article Preview

Abstract:

A resistive ethanol gas sensor with a high sensitivity has been proposed. The fabricated gas sensor has a very promising response and recovery at room temperature. The proposed sensor has been fabricated by depositing sensitive nanostructured material on printed circuit board interdigitated electrodes. As the sensitive material, ZnO nanorods of high uniformity have been synthesized by hydrothermal method and then decorated by PbS nanoparticles. The synthesized decorated nanorods were characterized by X-ray diffraction and scanning electron microscope which confirmed the formation of the desired nanostructures. The ethanol gas sensing properties of the ZnO nanorods decorated with PdS nanoparticles was measured in a test chamber. The minimum ethanol concentration detected by the sensor has been 10 ppm. The results showed the higher sensitivity of the proposed sensor to the ethanol at room temperature compared to similar works.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-155

Citation:

Online since:

December 2020

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Zhu, W. Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensors and Actuators A: Physical. 267 (2017) 242-261.

DOI: 10.1016/j.sna.2017.10.021

Google Scholar

[2] S. Öztürk, N.Kılınç, N.Taşaltın, Z.Z. Öztürk, Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures. 44 (2012) 1062-1065.

DOI: 10.1016/j.physe.2011.01.015

Google Scholar

[3] S. Rackauskas, O. Klimova, H. Jiang, A. Nikitenko, K. A. Chernenko, S. D. Shandakov, E. I. Kauppinen, O. V. Tolochko, A. G. Nasibulin, A novel method for continuous synthesis of ZnO tetrapods, The Journal of Physical Chemistry C. 119 (2015) 16366-16373.

DOI: 10.1021/acs.jpcc.5b03702

Google Scholar

[4] R A. Rodrigues, M. Castegnaro, J. Arguello, M. Alves, J. Morais, Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film, Applied Surface Science. 402 (2017) 136-141.

DOI: 10.1016/j.apsusc.2017.01.052

Google Scholar

[5] P. Van Thanh, H. H. Mai, N. V. Tuyen, S. C. Doanh, N.C. Viet, Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor, Journal of Electronic Materials. 46 (2017) 3732-3737.

DOI: 10.1007/s11664-017-5369-0

Google Scholar

[6] F. Meng; S. Ge, Y. Jia, B. Sun, Y. Sun, C. Wang, H. Wu, Z. Jin, M. Li, Interlaced nanoflake-assembled flower-like hierarchical ZnO microspheres prepared by bisolvents and their sensing properties to ethanol, Journal of Alloys and Compounds. 632 (2015) 645-650.

DOI: 10.1016/j.jallcom.2015.01.289

Google Scholar

[7] J. Fan, T. Li, H. Heng, Hydrothermal growth of ZnO microrods on ITO-coated glass substrate, Applied Physics A. 119 (2015) 185-192.

DOI: 10.1007/s00339-014-8946-6

Google Scholar

[8] K. Gautam, I. Singh, P. Bhatnagar, K. R. Peta, The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods, Superlattices and Microstructures. 93 (2016) 101-108.

DOI: 10.1016/j.spmi.2016.03.001

Google Scholar

[9] K. X. Zhang, X. Wen, C. B. Yao, J. Li, M. Zhang, Q. H. Li, W. J. Sun, J.D. Wu, Synthesis, structural and optical properties of silver nanoparticles uniformly decorated ZnO nanowires, Chemical Physics Letters. 698 (2018) 147-151.

DOI: 10.1016/j.cplett.2018.03.018

Google Scholar

[10] D. Zhang, G. Dong, Y. Cao, Y. Zhang , Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method, J Colloid Interface Sci.528 (2018) 184-191.

DOI: 10.1016/j.jcis.2018.05.085

Google Scholar

[11] F. Ghasemi, Z. Kordrostami, S. Hamedi, Nanorod pH Sensor Based on an Extended Gate MOSFET, In 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE. (2019) pp.101-103.

DOI: 10.1109/iraniancee.2019.8786647

Google Scholar

[12] L. Masihzadeh, Z. Kordrostami, B. Pourabbas, Fabrication of E-coli bacteria Biosensor and Measurement under UV radiation, In 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE. (2019) pp.23-25.

DOI: 10.1109/iraniancee.2019.8786369

Google Scholar

[13] M. r. Nourgostar, Z. Kordrostami, Non-Enzymatic Optical Glucose Biosensor Using Grown ZnO Nanorods on Printed Circuit Boards, Iranian Conference on Optics and Photonics and Iranian Conference on Photonics Engineering and Technology. 25 (2019) 1097-1100.

Google Scholar

[14] M. G. Al-Fandi, R. J. Oweis, R. H. Hayajneh, I. R. Alhamdan, R. A. Alabed, O. F. Al-Rawi, Direct electrochemical bacterial sensor using ZnO nanorods disposable electrode, Sensor Review. (2018).

DOI: 10.1108/sr-06-2017-0117

Google Scholar

[15] K. Dutta, N. Banerjee, H. Mishra, P. Bhattacharyya, Performance Improvement of Pd/ZnO-NR/Si MIS Gas Sensor Device in Capacitive Mode: Correlation With Equivalent-Circuit Elements, IEEE Transactions on Electron Devices. 63 (2016) 1266-1273.

DOI: 10.1109/ted.2016.2520020

Google Scholar

[16] D. Punetha, S. K. Pandey, CO Gas Sensor Based on E-Beam Evaporated ZnO, MgZnO, and CdZnO Thin Films: A Comparative Study, IEEE Sensors Journal. 19 (2019) 2450-2457.

DOI: 10.1109/jsen.2018.2890007

Google Scholar

[17] D. Zhang, G. Dong, Z. Wu, W. Pan, X. Fan, Liquefied Petroleum Gas Sensing Properties of ZnO/PPy/PbS QDs Nanocomposite Prepared by Self-Assembly Combining With SILAR Method, IEEE Sensors Journal. 19 (2019) 2855-2862.

DOI: 10.1109/jsen.2018.2890074

Google Scholar

[18] A. J. Gimenez, G. Luna-Barcenas, I. C. Sanchez, J. M. Yanez-Limon, Paper-Based ZnO Oxygen Sensor, IEEE Sensors Journal. 15 (2015) 1246-1251.

DOI: 10.1109/jsen.2014.2361780

Google Scholar

[19] T. Tharsika, M. Thanihaichelvan, A. Haseeb, S. Akbar, Highly Sensitive and Selective Ethanol Sensor Based on ZnO Nanorod on SnO2 Thin Film Fabricated by Spray Pyrolysis, Nano-Hetero-Structures for Chemical Sensing: Opportunities and Challenges. (2020).

DOI: 10.3389/fmats.2019.00122

Google Scholar

[20] B. Mandal,Aaryashree, R. Singh, S. Mukherjee, Highly Selective and Sensitive Methanol Sensor Using Rose-Like ZnO Microcube and MoO3 Micrograss-Based Composite, IEEE Sensors Journal. 18 (2018) 2659-2666.

DOI: 10.1109/jsen.2018.2803682

Google Scholar

[21] J.H. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Pd functionalization on ZnO nanowires for enhanced sensitivity and selectivity to hydrogen gas, Sensors and Actuators B: Chemical. 297 (2019).

DOI: 10.1016/j.snb.2019.126693

Google Scholar

[22] M. Yang, S. Zhang, F. Qu, S. Gong, C. Wang, L. Qiu, M. Yang, W. Cheng, High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles, Journal of Alloys and Compounds. 797 (2019) 246-252.

DOI: 10.1016/j.jallcom.2019.05.101

Google Scholar

[23] J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3, J Hazard Mater.381(2020) 120919.

DOI: 10.1016/j.jhazmat.2019.120919

Google Scholar

[24] J. H. Kim, J. H. Lee, Y. Park, J. Y. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Toluene- and benzene-selective gas sensors based on Pt- and Pd-functionalized ZnO nanowires in self-heating mode, Sensors and Actuators B: Chemical. 294 (2019) 78-88.

DOI: 10.1016/j.snb.2019.05.032

Google Scholar

[25] Y. Wang, X. N. Meng, J. L. Cao, Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets, J Hazard Mater.381 (2020) 120944.

DOI: 10.1016/j.jhazmat.2019.120944

Google Scholar

[26] P. Salimi kuchi, H. Roshan, M. H. Sheikhi, A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties, Journal of Alloys and Compounds. 816 (2020) 816.

DOI: 10.1016/j.jallcom.2019.152666

Google Scholar

[27] A. Mirzaei, S. Park, H. Kheel, G.J. Sun, S. Lee, C. Lee, ZnO-capped nanorod gas sensors, Ceramics International. 42 (2016) 6187-6197.

DOI: 10.1016/j.ceramint.2015.12.179

Google Scholar

[28] S. J. Young, Z. D. Lin, Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate, Microsystem Technologies. 24 (2016) 55-58.

DOI: 10.1007/s00542-016-3154-2

Google Scholar

[29] Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement, Nanoscale. 6 (2014) 4604-4610.

DOI: 10.1039/c3nr06809a

Google Scholar

[30] D. Maity, K. Rajavel, R. T. R. Kumar, Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor, Sensors and Actuators B: Chemical.261(2018) 297-306.

DOI: 10.1016/j.snb.2018.01.152

Google Scholar

[31] D. Acharyya, S. Ghosal, R. Roychaudhuri, P. Bhattacharyya, Hierarchical MnO 2 Nanoflowers Based Efficient Room Temperature Alcohol Sensor, In 2018 IEEE SENSORS. IEEE. (2018) pp.1-4.

DOI: 10.1109/icsens.2018.8589597

Google Scholar

[32] B. Bhowmik, K. Dutta, P. Bhattacharyya, An Efficient Room Temperature Ethanol Sensor Device Based on p-n Homojunction of TiO2 Nanostructures, IEEE Transactions on Electron Devices. 66(2019) 1063-1068.

DOI: 10.1109/ted.2018.2885360

Google Scholar