p.1
p.13
p.27
p.39
p.51
p.97
p.123
p.135
p.145
Vertical Cavity Surface Emitting Lasers as Sources for Optical Communication Systems: A Review
Abstract:
Next generation integrated photonic circuits will be dominated by small footprint devices with lower power consumption, low threshold currentsand high efficiencies. Vertical Cavity Surface Emitting Lasers (VCSELs) having those attractive qualities has shown results to meet the next generation demands for optical communication sources. VCSELs applications are sensors, data com, optical communication, spectroscopy, printers, optical storage, laser displays, atomic optical clocks, laser radar, optical signal processing to name a few. This review centres around on the basic operation of semiconductor lasers, structure analysis of the devices and parameter optimisation for optical communication systems. This paper will provide comparisons on growth techniques and material selection and intends to give the best material realisation for nano optical sources that are up to date as used in optical communication systems. It also provides summarised improvements by other research groups in realisation of VCSELs looking at speeds, efficiency, temperature dependence and the device physical dimensions. Different semiconductor device growth methods, light emitting materials and VCSELs state of art are reviewed. Discussions and a comparisons on different methods used for realising VCSELs are also looked into in this paper.
Info:
Periodical:
Pages:
51-96
Citation:
Online since:
December 2020
Price:
Сopyright:
© 2020 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] D. B. Werner Hofmann, Vcsel-based light sources-scalability challenges for vcsel-based multi-100-gb/s systems,, IEEE Photonics Journal, vol. 4, October (2012).
[2] S. Chuang and D. Bimberg, Metal-cavity nanolasers,, IEEE Photonics Journal, vol. 3, pp.288-292, April (2011).
[3] M. Z. S. C. E. S. A. Matsudaira, C-Y. Lu and D. Bimberg, Cavity-volume scaling law of quantum-dot metal-cavity surface-emitting microlasers," IEEE Photonics Journal, vol. 4, pp.1103-1114.
[5] J. Harris, T. O'Sullivan, T. Sarmiento, M. Lee, and S. Vo, Emerging applications for vertical cavity surface emitting lasers,, Semiconductor Science and Technology, vol. 26, p.014010, 11 (2010).
[6] W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, 1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,, IEEE Photonics Technology Letters, vol. 20, no. 4, pp.291-293, (2008).
[7] W. Y. G. L. D. Francis, H.-L. Chen and C. Chang-Hasnain, Monolithic 2d-vcsel array with >2w cw and > 5w pulsed output power,, Electron. Lett, vol. 34, pp.2132-2133, October (1998).
DOI: 10.1049/el:19981517
[8] V. K. A. M. G. X. J. W. P. P. J-F. Seurin, C. Ghosh and L. D'Asaro, High-power highefficiency 2d vcsel array,, Proc.SPIE, vol. 6908, pp.690-808, (2008).
[9] M.-C. Amann and W. Hofmann, Inp-based long-wavelength vcsels and vcsel arrays,, IEEE J. Sel. Topics Quatum Electron, vol. 15, pp.861-868, May/June (2009).
[10] A. Liu, P. Wolf, J. Lott, and D. Bimberg, Vertical-cavity surface-emitting lasers for data communication and sensing,, Photonics Research, vol. 7, p.121, 02 (2019).
DOI: 10.1364/prj.7.000121
[11] K. A. E., Laser Generation, ch. 1, pp.1-25. John Wiley Sons, Ltd, (2008).
[12] K. Iga, Surface-emitting laser-its birth and generation of new optoelectronics field,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp.1201-1215, (2000).
DOI: 10.1109/2944.902168
[13] M. O. Manasreh, Opto electronic if semiconductors and superlattices,, in SEMICONDUCTOR QUANTUM WELLS INTERMIXING Volume 8, p.572, GORDON AND BREACH SCIENCE.
[14] B. G. Streetman and B. Sanjay Kumar, Solid state electronic devices,, in A Solid State Electronic Devices seventh edition, pp.21-42, Pearson Education Limited, (2016).
[15] N. Ashcroft and N. D. Mermin, Solid state physics,, in Solid State Physics, Philadelphia: W. B. Saunders, (1976).
[16] C. Kittel, Introduction to solid state physics,, in Introduction to Solid State Physics, New York: Wiley, (1996).
[17] M. D. D. Plummer, J. D. and P. B. Griffin, Silicon vlsi technology,, in Silicon VLSI Technology, Ipper Saddle River,NJ: Prentice Hall, (2000).
[18] G. B. Stringfellow, Organometallic vapor-phase epitaxy,, in Organometallic Vapor-Phase Epitaxy, New york: Academic Press, (1989).
[19] V. Swaminathan and A. T. Macrander., Material aspects of gaas and inp based structures," in Material Aspects of GaAs and InP Based Structures, Englewood Cliffs, NJ: Prentice Hall, 1991.[20] C. W. Wilmsen, "Physics and chemistry of iii-v compound semiconductor interfaces,, in Physics and Chemistry of III-V Compound Semiconductor Interfaces, p.153, Plenum press.
[21] W. Hofmann, InP-based long-wavelength VCSELs and VCSEL array for high-speed optical communication, pp.25-40. Technische Univ, (2009).
[22] J. Buus and M.-C. Amann, Tunable Laser Diodes and Related Optical Sources. Weinheim, Germany: Wiley-VCH, (2005).
[23] B. Tell, K. Brown, Goebeler, R. Leibenguth, F. Baez, and Y. H. Lee, Temperature dependence of gaas, algaas vertical cavity surface emitting lasers,, Applied Physics Letters, vol. 60, pp.683-685, 03 (1992).
DOI: 10.1063/1.106536
[24] J. P. van der Ziel and M. Ilegems, Multilayer gaas-al0.3ga0.7as dielectric quarter wave stacks grown by molecular beam epitaxy,, Appl. Opt., vol. 14, pp.2627-2630, Nov (1975).
DOI: 10.1364/ao.14.002627
[25] M. Ogura, T. Hata, N. J. Kawai, and T. Yao, GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,, Japanese Journal of Applied Physics, vol. 22, pp. L112-L114, feb (1983).
DOI: 10.1143/jjap.22.l112
[26] M. Ogura, T. Hata, and T. Yao, Distributed feed back surface emitting laser diode with multilayered heterostructure,, Japanese Journal of Applied Physics, vol. 23, pp. L512-L514, jul (1984).
DOI: 10.1143/jjap.23.l512
[27] M. Ogura and T. Yao, Surface emitting laser diode with alxga1-xas /gaas multilayered heterostructure,, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol. 3, pp.784-787, 04 (1985).
DOI: 10.1116/1.583099
[28] K. Iga, S. Kinoshita, and F. Koyama, Microcavity galaas/gaas surface-emitting laser with ith = 6 ma,, Electronics Letters, vol. 23, no. 3, pp.134-136, (1987).
DOI: 10.1049/el:19870095
[29] T. Sakaguchi, F. Koyama, and K. Iga, Vertical cavity surface-emitting laser with an algaas/alas bragg reflector,, Electronics Letters, vol. 24, no. 15, pp.928-929, (1988).
DOI: 10.1049/el:19880632
[30] P. L. Gourley and T. J. Drummond, Visible, room-temperature, surface-emitting laser using an epitaxial Fabry-Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,, Applied Physics Letters, vol. 50, pp.1225-1227, May (1987).
DOI: 10.1063/1.97916
[31] J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,, Electronics Letters, vol. 25, no. 17, pp.1123-1124, (1989).
DOI: 10.1049/el:19890754
[32] Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,, Electronics Letters, vol. 25, no. 20, pp.1377-1378, (1989).
DOI: 10.1049/el:19890921
[33] Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, Top-surface-emitting gaas four-quantum-well lasers emitting at 0.85 mu m," Electronics Letters, vol. 26, no. 11, pp.710-711, 1990.[34] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, "Low threshold planarized vertical-cavity surface-emitting lasers,, IEEE Photonics Technology Letters, vol. 2, no. 4, pp.234-236, (1990).
DOI: 10.1049/el:19900463
[35] J. Dallesasse, N. Holonyak, A. Sugg, T. Richard, and N. El-Zein, Hydrolyzation oxidation of alxga1-xas-alas-gaas quantum well heterostructures and superlattices,, Applied Physics Letters, vol. 57, pp.2844-2846, 01 (1991).
DOI: 10.1063/1.103759
[36] D. Huffaker, D. Deppe, K. Kumar, and T. Rogers, Native-oxide ring contact for low threshold vertical-cavity lasers,, Applied Physics Letters, vol. 65, pp.97-99, 08 (1994).
DOI: 10.1063/1.113087
[37] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, Advances in selective wet oxidation of algaas alloys,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 3, pp.916-926, (1997).
DOI: 10.1109/2944.640645
[38] J. Dallesasse and J. Holonyak, Oxidation of al-bearing iii-v materials: A review of key progress,, Journal of Applied Physics, vol. 113, 02 (2013).
DOI: 10.1063/1.4769968
[39] I. Melngailis, Longitudinal Injection-Plasma Laser of InSb,, Applied Physics Letters, vol. 6, pp.59-60, Feb. (1965).
DOI: 10.1063/1.1754164
[40] J. S. Eng and C. Kocot, Surface emitting laser,, IEICE, C-I, pp.483-493, 9 (1998).
[41] H. Soda, K. ichi Iga, C. Kitahara, and Y. Suematsu, GaInAsP/InP surface emitting injection lasers,, Japanese Journal of Applied Physics, vol. 18, pp.2329-2330, dec (1979).
DOI: 10.1143/jjap.18.2329
[42] D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, and K. Iga, 1.17-μm highly strained gainasgaas quantum-well laser,, IEEE Photonics Technology Letters, vol. 11, pp.946-948, (1999).
DOI: 10.1109/68.775308
[43] P. G. S. P. A. C. J.-M. G. G. B. R. S. R. H. M. H. J. B. E. Pougeoise, Ph. Gilet and P. Sundgren, Strained ingaas quantum well vertical cavity surface emitting lasers emitting at 1.3 μm,, Electron Letters, vol. 42, pp.584-586, 05 (2006).
DOI: 10.1049/el:20060060
[44] N. Niskiyama, M. Arai, S. Shinada, M. Azuchi, T. Miyamoto, F. Koyama, and K. Iga, Highly strained gainas-gaas quantum-well vertical-cavity surface-emitting laser on gaas (311)b substrate for stable polarization operation,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 2, pp.242-248, (2001).
DOI: 10.1109/2944.954136
[45] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnstrm, E. Odling, and J. Malmquist, 1260 nm ingaas vertical-cavity lasers,, Electronics Letters, vol. 38, no. 13, pp.635-636, (2002).
DOI: 10.1049/el:20020431
[46] H.-C. Kuo, Y. Chang, H. Yao, Y. Chang, F.-I. Lai, M. Tsai, and S.-C. Wang, High-speed modulation of ingaas: Sb-gaas-gaasp quantum-well vertical-cavity surface-emitting lasers with 1.27-μm emission wavelength,, Photonics Technology Letters, IEEE, vol. 17, pp.528-530, 04 (2005).
[47] R. Marcks von Würtemberg, P. Maly Sundgren, J. Berggren, M. Hammar, M. Ghisoni, E. Ödling, V. Oscarsson, and J. Malmquist, 1.3 μm ingaas vertical-cavity surface-emitting lasers with mode filter for single mode operation," Applied Physics Letters, vol. 85, pp.4851-4853.
DOI: 10.1063/1.1823012
[49] M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,, Applied Physics Letters, vol. 76, pp.2179-2181, 04 (2000).
DOI: 10.1063/1.126290
[50] V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, Highpower 1320-nm wafer-bonded vcsels with tunnel junctions,, IEEE Photonics Technology Letters, vol. 15, no. 11, pp.1495-1497, (2003).
[51] C.-K. Lin, D. P. Bour, J. Zhu, W. Perez, M. H. Leary, A. Tandon, S. Corzine, and M. R. T. Tan, High temperature continuous-wave operation of 1.3-1.55 /spl mu/m vcsels with inp/air-gap dbrs,, IEEE 18th International Semiconductor Laser Conference, pp.145-146, (2002).
[52] N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. . Li, R. Bhat, and C. E. Zah, Long-wavelength vertical-cavity surface-emitting lasers on inp with lattice matched algainas-inp dbr grown by mocvd,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 5, pp.990-998, (2005).
[53] Julian Cheng, Chan-Long Shieh, Xiaodong Huang, Guoli Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, Efficient cw lasing and high-speed modulation of 1.3-μm algainas vcsels with good high temperature lasing performance,, IEEE Photonics Technology Letters, vol. 17, no. 1, pp.7-9, (2005).
[54] M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, Long-wavelength vcsel-based cwdm scheme for 10-gbe links,, IEEE Photonics Technology Letters, vol. 17, no. 6, pp.1286-1288, (2005).
[55] V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. . Berseth, A. Syrbu, A. Rudra, and E. Kapon, High-performance single-mode vcsels in the 1310-nm waveband,, IEEE Photonics Technology Letters, vol. 17, no. 5, pp.947-949, (2005).
[56] W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. . Amann, 10-gb/s data transmission using bcb passivated 1.55-μm ingaalas-inp vcsels,, IEEE Photonics Technology Letters, vol. 18, no. 2, pp.424-426, (2006).
[57] J. Boucart, G. Suruceanu, P. Royo, V. I. Iakovlev, A. Syrbu, A. Caliman, A. Mereuta, A. Mircea, C. . Berseth, A. Rudra, and E. Kapon, 3.125-gb/s modulation up to 70/spl deg/c using 1.3- /spl mu/m vcsels fabricated with localized wafer fusion for 10gbase lx4 applications,, IEEE Photonics Technology Letters, vol. 18, no. 4, pp.571-573, (2006).
[58] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, Continuous-wave operation of 1.30 [micro sign]m gaassb/gaas vcsels,, Electronics Letters, vol. 37, pp.566-567, 05 (2001).
DOI: 10.1049/el:20010405
[59] D. C. Kilper, F. Quochi, J. E. Cunningham, and M. Dinu, High-speed dynamics of gaassb vertical-cavity lasers," IEEE Photonics Technology Letters, vol. 14, no. 4, pp.438-440, 2002.[60] P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi, and Y. . Zhang, "Long wavelength gaasp/gaas/gaassb vcsels on gaas substrates for communications applications,, Electronics Letters, vol. 39, no. 13, pp.987-988, (2003).
DOI: 10.1049/el:20030664
[61] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance,, Japanese Journal of Applied Physics, vol. 35, pp.1273-1275, feb (1996).
DOI: 10.1143/jjap.35.1273
[62] K. Choquette, J. Klem, A. Fischer, O. Blum, A. Allerman, I. Fritz, S. Kurtz, W. Breiland, R. Sieg, K. Geib, J. Scott, and R. Naone, Room temperature continuous wave ingaasn quantum well vertical-cavity lasers emitting at 1.3 μm,, Electronics Letters, vol. 36, pp.1388-1390, 09 (2000).
DOI: 10.1049/el:20000928
[63] T. Kageyama, T. Miyamoto, S. Makino, N. Nishiyama, F. Koyama, and K. Iga, Hightemperature operation up to 170 °c of gainnas-gaas quantum-well lasers grown by chemical beam epitaxy,, Photonics Technology Letters, IEEE, vol. 12, pp.10-12, 02 (2000).
DOI: 10.1109/68.817430
[64] A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, Oc-48 capable ingaasn vertical cavity lasers,, Electronics Letters, vol. 37, no. 6, pp.355-356, (2001).
DOI: 10.1049/el:20010232
[65] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, and G. Ebbinghaus, Electrically pumped 10 gbit/s movpe-grown monolithic 1.3 mu m vcsel with gainnas active region,, Electronics Letters, vol. 38, pp.322-324, 04 (2002).
DOI: 10.1049/el:20020226
[66] T. Takeuchi, Y.-L. Chang, M. Leary, A. Tandon, H. Luan, D. Bour, S. Corzine, R. Twist, and M. Tan, 1.3 μm ingaasn vertical cavity surface emitting lasers grown by mocvd,, Electronics Letters, vol. 38, pp.1438-1440, 12 (2002).
DOI: 10.1049/el:20021000
[67] T. Nishida, M. Takaya, S. Kakinuma, and T. Kaneko, 4.2-mw gainnas long-wavelength vcsel grown by metalorganic chemical vapor deposition,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 5, pp.958-961, (2005).
[68] J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, and T. Fanning, 1310nm vcsels in 1-10gb/s commercial applications,, Proc. SPIE, vol. 6132, 02 (2006).
DOI: 10.1117/12.660840
[69] M. A. Wistey, S. R. Bank, H. P. Bae, H. B. Yuen, E. R. Pickett, L. L. Goddard, and J. S. Harris, Gainnassb/gaas vertical cavity surface emitting lasers at 1534 nm,, Electronics Letters, vol. 42, no. 5, pp.282-283, (2006).
DOI: 10.1049/el:20064455
[70] J. Lott, N. Ledentsov, V. Ustinov, N. Maleev, A. Zhukov, A. Kovsh, M. Maximov, B. Volovik, Z. Alferov, and D. Bimberg, "Inas-ingaas quantum dot vcsels on gaas substrates emitting at 1.3.
DOI: 10.1049/el:20000988
[71] A. N. AL-Omari and K. L. Lear, Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-ghz bandwidth," IEEE Photonics Technology Letters, vol. 16, no. 4, pp.969-971.
[73] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, 15.6-gb/s transmission over 1 km of next generation multimode fiber,, IEEE Photonics Technology Letters, vol. 14, no. 5, pp.717-719, (2002).
DOI: 10.1109/68.998736
[74] C. J. Chang-Hasnain, J. P. Harbison, C. . Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. . Lee, Multiple wavelength tunable surface-emitting laser arrays,, IEEE Journal of Quantum Electronics, vol. 27, no. 6, pp.1368-1376, (1991).
DOI: 10.1109/3.89953
[75] F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, Wavelength control of vertical cavity surface-emitting lasers by using nonplanar mocvd,, IEEE Photonics Technology Letters, vol. 7, no. 1, pp.10-12, (1995).
DOI: 10.1109/68.363392
[76] L. E. Eng, K. Bacher, Wupen Yuen, J. S. Harris, and C. J. Chang-Hasnain, Multiplewavelength vertical cavity laser arrays on patterned substrates,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 2, pp.624-628, (1995).
DOI: 10.1109/2944.401250
[77] G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surfacecontrolled mocvd growth rate enhancement and reduction,, IEEE Photonics Technology Letters, vol. 9, no. 8, pp.1069-1071, (1997).
DOI: 10.1109/68.605502
[78] Kai Yang, Yuxin Zhou, X. D. Huang, C. P. Hains, and Julian Cheng, Monolithic oxideconfined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper bragg mirror,, IEEE Photonics Technology Letters, vol. 12, no. 4, pp.377-379, (2000).
DOI: 10.1109/68.839024
[79] F. Koyama, Recent advances of vcsel photonics,, Journal of Lightwave Technology, vol. 24, no. 12, pp.4502-4513, (2006).
[80] H. Li, P. Wolf, P. Moser, G. Larisch, J. Lott, and D. Bimberg, Vertical-cavity surface-emitting lasers for optical interconnects,, SPIE Newsroom, 11 (2014).
[81] Y. Yamazoe, T. Nishino, Y. Hamakawa, and T. Kariya, Bandgap energy of InGaAsP quaternary alloy,, Japanese Journal of Applied Physics, vol. 19, pp.1473-1479, aug (1980).
DOI: 10.1143/jjap.19.1473
[82] C. W. R. O'Shea, D. C. and W. T. Rhodes, Introduction to Lasers and Their Applications. Addison-Wesley, Reading, MA., (1977).
[83] H. Casey and M. Panish, Chapter 4 - heterojunctions,, in Heterostructure Lasers (H. Casey and M. Panish, eds.), pp.187-255, Academic Press, (1978).
[84] J. T. Luxon and D. E. Parker, Industrial Lasers and Their Applications. Prentice Hall, Englewood Cliffs, NJ., (1985).
[85] P. Berlien and G. Müller, Applied Laser Medicine. 01 2003.[86] G. Chryssolouris, Laser machining - Theory and practice. 01 (1991).
[87] M. Goeppert-Mayer, Annalenden physik,, vol. 9, p.273, (1931).
[88] Bhattacharya, Semiconductor Optoelectronics Devices. Prentice Hall: Engle wood Cliffs, (1994).
[89] A. R. Henderson, A Guide to Laser Safety. Chapman and Hall, London, (1997).
[90] B. B. Laud, Lasers and Non-Linear Optics. Wiley Eastern Limited, New Delhi, (1985).
[91] K. Shimoda, Introduction to Laser Physics, 2nd edition. Springer-Verlag, Berlin., (1986).
[92] K. Thyagarajan and A. K. Ghatak, Lasers, Theory and Applications. Plenum press,New York, (1981).
[93] J. Wilson and J. F. B. Hawkes, Lasers: Principles and Applications. Prentice Hall,New York, (1987).
[94] O. Svelto, Principles of Lasers , 3rd edition. Plenum press,New York, (1989).
[95] E. K.-A. Jr, Principles of Laser Material Processing. John Wiley Sons, inc., Hoboken, New Jersey, (2000).
[96] K. A. E., Rate Equations, ch. 4, pp.71-82. John Wiley Sons, Ltd, (2008).
[97] N. W. Barret, C.R. and A. S. Tetelman, The Principles of Engineering Materials. Prentice Hall, Englewood Cliffs, NJ, (1973).
[98] E. O. Odoh1 and A. S. Njapba2, A review of semiconductor quantum well devices,, IRnova, vol. 46, (2015).
[99] Dynamic Effects, ch. Five, pp.247-333. John Wiley Sons, Ltd, (2012).
[100] I. Suemune, Theoretical study of differential gain in strained quantum well structures,, IEEE Journal of Quantum Electronics, vol. 27, no. 5, pp.1149-1159, (1991).
DOI: 10.1109/3.83371
[101] P. Westbergh, J. S. Gustavsson, A. Haglund, M. Skold, A. Joel, and A. Larsson, High-speed, low-current-density 850 nm vcsels,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp.694-703, (2009).
[102] S. Healy, E. O'Reilly, J. Gustavsson, P. Westbergh, A. Haglund, A. Larsson, and A. Joel, Active region design for high-speed 850-nm vcsels,, Quantum Electronics, IEEE Journal of, vol. 46, pp.506-512, 05 (2010).
[103] P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, Impact of photon lifetime on high-speed vcsel performance,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, pp.1603-1613, (2011).
[104] G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, Impact of photon lifetime on the temperature stability of 50 gb/s 980 nm vcsels,, IEEE Photonics Technology Letters, vol. 28, no. 21, pp.2327-2330, (2016).
[105] W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, 44 gb/s vcsel for optical interconnects," 03 2011.[106] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, "85 °c errorfree operation at 38 gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,, Applied Physics Letters, vol. 100, 02 (2012).
DOI: 10.1063/1.3688040
[107] H. Then, C. Wu, M. Feng, and N. Holonyak, Microwave characterization of purcell enhancement in a microcavity laser,, Applied Physics Letters, vol. 96, pp.131107-131107, 04 (2010).
DOI: 10.1063/1.3377913
[108] A. Larsson, Advances in vcsels for communication and sensing,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, pp.1552-1567, (2011).
[109] P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, Low series resistance high-efficiency gaas/algaas vertical-cavity surface-emitting lasers with continuously graded mirrors grown by mocvd,, IEEE Photonics Technology Letters, vol. 3, no. 7, pp.591-593, (1991).
DOI: 10.1109/68.87923
[110] M. Afromowitz, Thermal conductivity of ga1-xalxas alloys,, Journal of Applied Physics, vol. 44, pp.1292-1294, 04 (1973).
[111] K. M. Lascola, W. Yuen, and C. J. Chang-Hasnain, Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application, pp.79-80, (1997).
[112] A. Al-Omari, M. S. Alias, A. Ababneh, and K. Lear, Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm vcsels with copper-plated heat sinks,, Journal of Physics D: Applied Physics, vol. 45, p.505101, 11 (2012).
[113] R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, Thermal resistance of vcsels bonded to integrated circuits,, IEEE Photonics Technology Letters, vol. 11, no. 12, pp.1554-1556, (1999).
DOI: 10.1109/68.806844
[114] E. Schubert, L.-W. Tu, G. Zydzik, R. Kopf, A. Benvenuti, and M. Pinto, Elimination of heterojunction band discontinuities by modulation doping,, Applied Physics Letters, vol. 60, pp.466-468, 02 (1992).
DOI: 10.1063/1.106636
[115] Y. . Chang, C. S. Wang, and L. A. Coldren, High-efficiency, high-speed vcsels with 35 gbit=s error-free operation,, Electronics Letters, vol. 43, no. 19, pp.1022-1023, (2007).
DOI: 10.1049/el:20072074
[116] M. Azuchi, N. Jikutani, M. Arai, T. Kondo, and F. Koyama, Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,, in CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), vol. 1, p.163 Vol.1-, (2003).
[117] Y. c. Chang, C. s. Wang, L. A. Johansson, and L. A. Coldren, High-efficiency, high-speed vcsels with deep oxidation layers,, Electronics Letters, vol. 42, no. 22, pp.1281-1282, (2006).
DOI: 10.1049/el:20062538
[118] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, 25gbit/s operation of ingaas-based vcsels," Electronics Letters, vol. 42, pp.975-976, 02 2006.[119] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, "Analog modulation properties of oxide confined vcsels at microwave frequencies,, Journal of Lightwave Technology, vol. 20, no. 9, pp.1740-1749, (2002).
[120] J. Nanni, F. Pizzuti, G. Tartarini, J.-L. Polleux, and C. Algani, Vcsel-ssmf-based radio-overfiber link for low cost and low consumption wireless dense networks,, pp.1-4, 10 (2017).
[121] W. Lin, H.-P. Shiao, C.-Y. Chang, T.-T. Shi, C.-T. Lee, and Y.-K. Tu, Energy band structure tailoring of ingaasp/ingaasp quantum well prepared by organometallic vapor phase epitaxy and measured by photoluminescence,, pp.4-9, 02 (1994).
[122] K. K. H. Kawai, Surface and interface analysis,, july (1990).
[123] C. G. Van de Walle, Band lineups and deformation potentials in the model-solid theory,, Phys. Rev. B, vol. 39, pp.1871-1883, Jan (1989).
[124] Y. K. T. W. Lin, Internal technical report,,.
[125] T. A. D. W. J. H.-G. Y. L. W. Lin, Y. K. Tu and J. H. P, Shiao, Cryst growth,, vol. 123, (1992).
[126] N. El-Zein and B. McDermott, Interface and material-quality study of ingaasp/inp and ingaasp1/ingaasp2 superlattices,, Conference Proceedings - International Conference on Indium Phosphide and Related Materials, 01 (2003).
[127] S. Pradana, A. Syahriar, A. H. Lubis, and S. Rahardjo, Comparison power of semiconductor lasers at wavelength 1480nm using ingaas ingaasp materials for edfa pumping scheme,, in 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), pp.1-5, (2018).
[128] R. Faez, A. Marjani, and S. Marjani, Design and simulation of a high power single mode 1550nm InGaAsP VCSELs,, IEICE Electronics Express, vol. 8, no. 13, pp.1096-1101, (2011).
DOI: 10.1587/elex.8.1096
[129] J. Piprek, D. Babic, and J. Bowers, Simulation and analysis of 1.55 μm double-fused verticalcavity lasers,, Journal of Applied Physics, vol. 81, pp.3382-3390, 05 (1997).
DOI: 10.1063/1.365033
[130] K. Kandiah, P. S. Menon, S. Shaari, and B. Majlis, Design and modeling of a vertical-cavity surface-emitting laser (vcsel),, pp.297-301, 12 (2008).
[131] N. Nishiyama, M. Arai, S. Shinada, T. Miyamoto, F. Koyama, and K. Iga, Growth and optical properties of highly strained gainas/gaas quantum wells on (3 1 1)b gaas by mocvd,, Journal of Crystal Growth - J CRYST GROWTH, vol. 221, pp.530-534, 12 (2000).
[132] H. Nasu, Short-reach optical interconnects employing high-density parallel-optical modules,, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 16, pp.1337-1346, 11 (2010).
[133] K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, 1.1- µm -range high-speed tunnel junction vertical-cavity surface-emitting lasers,, IEEE Photonics Technology Letters, vol. 19, pp.1883-1885, (2007).
[134] Y. Chang and L. A. Coldren, Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp.704-715, 2009.[135] T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, "High-speed 1.1-µm-range ingaas vcsels,, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, p. OThS5, Optical Society of America, (2008).
[136] R. H. Johnson and D. M. Kuchta, 30 gb/s directly modulated 850 nm datacom vcsels,, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p. CPDB2, Optical Society of America, (2008).
[137] P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, 32 gbit/s multimode fibre transmission using high-speed, low current density 850 nm vcsel,, Electronics Letters, vol. 45, pp.366-368, 04 (2009).
DOI: 10.1049/el.2009.0201
[138] A. Mutig, S. Blokhin, A. Nadtochiy, G. Fiol, J. Lott, V. Shchukin, N. Ledentsov, and D. Bimberg, Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,, Applied Physics Letters, vol. 95, pp.131101-131101, 09 (2009).
DOI: 10.1063/1.3231446
[139] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, Oxide-confined 850 nm vcsels operating at bit rates up to 40 gbit/s,, Electronics Letters, vol. 45, no. 10, pp.501-503, (2009).
DOI: 10.1049/el.2009.0552
[140] P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, 40 gbit/s error-free operation of oxide-confined 850 nm vcsel,, Electronics Letters, vol. 46, no. 14, pp.1014-1016, (2010).
DOI: 10.1049/el.2010.1405
[141] P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, High-speed 850 nm vcsels with 28 ghz modulation bandwidth operating error-free up to 44 gbit/s,, Electronics Letters, vol. 48, no. 18, pp.1145-1147, (2012).
DOI: 10.1049/el.2012.2525
[142] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsso, and A. Larsson, Highspeed 850 nm vcsels operating error free up to 57 gbit/s,, Electronics Letters, vol. 49, no. 16, pp.1021-1023, (2013).
DOI: 10.1049/el.2013.2042
[143] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, Oxide-relief and zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 gbit/s operations,, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp.7900208-7900208, 03 (2013).
[144] F. Tan, M. Wu, M. Liu, M. Feng, and N. Holonyak, 850 nm oxide-vcsel with low relative intensity noise and 40 gb/s error free data transmission,, IEEE Photonics Technology Letters, vol. 26, no. 3, pp.289-292, (2014).
[145] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, Error-free 46 gbit/s operation of oxide-confined 980 nm vcsels at 85°c,, Electronics Letters, vol. 50, no. 19, pp.1369-1371, (2014).
DOI: 10.1049/el.2014.1703
[146] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, 30 ghz bandwidth 850 nm vcsel with sub-100 fj/bit energy dissipation at 25-50 gbit/s," Electronics Letters, vol. 51, no. 14, pp.1096-1098.
DOI: 10.1049/el.2015.0785
[148] M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, 850 nm oxide-confined vcsels with 50 gb/s error-free transmission operating up to 85 °c,, in Conference on Lasers and Electro-Optics, p. SF1L.6, Optical Society of America, (2016).
[149] E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 gbit/s data rate,, Electronics Letters, vol. 53, no. 13, pp.869-871, (2017).
DOI: 10.1049/el.2017.1165
[150] N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, 35 ghz bandwidth with directly current modulated 980 nm oxide aperture single cavity vcsels,, in 2018 IEEE International Semiconductor Laser Conference (ISLC), pp.1-2, (2018).
[151] P. Moser, Energy-efficient vcsels for optical interconnects,, 01 (2016).
[152] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, 56 fj dissipated energy per bit of oxide-confined 850 nm vcsels operating at 25 gbit/s,, Electronics Letters, vol. 48, no. 20, pp.1292-1294, (2012).
DOI: 10.1049/el.2012.2944
[153] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. Lott, and D. Bimberg, Energy-efficient and temperature-stable oxide-confined 980 nm vcsels operating error-free at 38 gbit/s at 85°c,, Electronics Letters, vol. 50, pp.103-105, 01 (2014).
DOI: 10.1049/el.2013.3941
[154] H. Li, P. Wolf, P. Moser, G. Larisch, J. Lott, and D. Bimberg, Temperature-stable, energyefficient, and high-bit rate oxide-confined 980-nm vcsels for optical interconnects,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp.1-9, 11 (2015).
[155] T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, 1060nm 28-gbps vcsel developed at furukawa,, Proceedings of SPIE - The International Society for Optical Engineering, vol. 9001, 01 (2014).
DOI: 10.1117/12.2042857
[156] D. A. B. Miller, Device requirements for optical interconnects to silicon chips,, Proceedings of the IEEE, vol. 97, no. 7, pp.1166-1185, (2009).
[157] A. Mutig, G. Fiol, P. Moser, F. Hopfer, M. Kuntz, V. A. Shchukin, N. N. Ledentsov, D. Bimberg, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and A. R. Kovsh, 120 °c 20 gbit/s operation of 980 nm single mode vcsel,, in 2008 IEEE 21st International Semiconductor Laser Conference, pp.9-10, (2008).
[158] L. Graham, H. Chen, D. Gazula, T. Gray, J. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. Macinnes, G. Landry, and J. Tatum, The next generation of high speed vcsels at finisar,, Proceedings of SPIE - The International Society for Optical Engineering, vol. 8276, p.1-, 02 (2012).
DOI: 10.1117/12.910505
[159] C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. Jackson, The next generation high data rate vcsel development at sedu," Proc SPIE, vol. 8639, p.03-, 03 2013.[160] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, "High-speed oxide confined 850-nm vcsels operating error-free at 40 gb/s up to 85�c,, IEEE Photonics Technology Letters, vol. 25, no. 8, pp.768-771, (2013).
[161] H. Li, P. Wolf, P. R. Moser, G. Larisch, J. A. Lott, and D. Bimberg, Temperature-stable 980-nm vcsels for 35-gb/s operation at 85 °c with 139-fj/bit dissipated heat,, IEEE Photonics Technology Letters, vol. 26, pp.2349-2352, (2014).
[162] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, A 50 gb/s nrz modulated 850 nm vcsel transmitter operating error free to 90 °c,, Journal of Lightwave Technology, vol. 33, no. 4, pp.802-810, (2015).
[163] M. Agustín, J.-R. Kropp, V. Shchukin, V. Kalosha, J.-W. Shi, Z. Khan, N. Jr, K.-L. Chi, and N. Ledentsov, Temperature stable oxide-confined 850-nm vcsels operating at bit rates up to 25 gbit/s at 150ºc,, p.24, 02 (2018).
DOI: 10.1117/12.2318015
[164] P. R. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, 81 fj/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,, (2011).
DOI: 10.1063/1.3597799
[165] J. . Shi, W. . Weng, F. . Kuo, J. . Chyi, S. Pinches, M. Geen, and A. Joel, Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,, in 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp.1-3, (2011).
[166] S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, Recorded low power dissipation in highly reliable 1060-nm vcsels for "green" optical interconnection,, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 17, pp.1614-1620, 11 (2011).
[167] P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, Energy efficient 40 gbit/s transmission with 850 nm vcsels at 108 fj/bit dissipated heat,, Electronics Letters, vol. 49, no. 10, pp.666-667, (2013).
DOI: 10.1049/el.2013.0617
[168] T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Malacarne, C. Neumeyr, A. Sitomaniemi, and J. Ollila, Optical interconnects based on vcsels and low-loss silicon photonics,, p.43, 02 (2018).
DOI: 10.1117/12.2290710
[169] Po-Kuan Shen, Chin-Ta Chen, Chia-Hao Chang, Chien-Yu Chiu, Chia-Chi Chang, Hsiao-Chin Lan, Yun-Chih Lee, and Mount-Learn Wu, On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,, in OFC 2014, pp.1-3, (2014).
[170] Y. W. Xu, A. Michael, and C. Y. Kwok, Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on silicon,, in Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV (H. H. Tan, J.-C. Chiao, L. Faraone, C. Jagadish, J. Williams, and A. R. Wilson, eds.), vol. 6800, pp.400-408, International Society for Optics and Photonics, SPIE, (2008).
DOI: 10.1117/12.759343
[171] R. dos Santos, D. D'Agostino, F. Soares, H. H. R. Haghighi, M. M. Smit, and X. X. Leijtens, Fabrication and characterization of a wet-etched inp-based vertical coupling mirror," 2013.[172] Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, "Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,, IET Optoelectronics, vol. 5, no. 5, pp.226-232, (2011).
[173] D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, Vcsels with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,, Electronics Letters, vol. 40, no. 17, pp.1064-1065, (2004).
DOI: 10.1049/el:20045585
[174] J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,, Applied Physics Letters, vol. 86, 03 (2005).
DOI: 10.1063/1.1880440
[175] K. Kaur, A. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, Flip-chip assembly of vcsels to silicon grating couplers via laser fabricated su8 prisms,, Optics Express, vol. 23, p.28264, 10 (2015).
DOI: 10.1364/oe.23.028264
[176] H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O'Brien, Flip-chip integration of tilted vcsels onto a silicon photonic integrated circuit,, Opt. Express, vol. 24, pp.16258-16266, Jul (2016).
DOI: 10.1364/oe.24.016258
[177] H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, and C. Tang, Heterogeneous integration of a iii-v vcsel light source for optical fiber sensing,, Opt. Lett., vol. 41, pp.4158-4161, Sep (2016).
DOI: 10.1364/ol.41.004158
[178] Y. Yang, G. Djogo, M. Haque, P. Herman, and J. Poon, Integration of an o-band vcsel on silicon photonics with polarization maintenance and waveguide coupling,, Optics Express, vol. 25, p.5758, 03 (2017).
DOI: 10.1364/oe.25.005758
[179] N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, Photonic wire bonding: A novel concept for chipscale interconnects,, Optics express, vol. 20, pp.17667-77, 07 (2012).
DOI: 10.1364/oe.20.017667
[180] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, Hybrid integration of silicon photonics circuits and inp lasers by photonic wire bonding,, Optica, vol. 5, pp.876-883, Jul (2018).
[181] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, A 71-gb/s nrz modulated 850-nm vcsel-based optical link,, IEEE Photonics Technology Letters, vol. 27, no. 6, pp.577-580, (2015).
[182] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, High-speed vcsels with strong confinement of optical fields and carriers,, Journal of Lightwave Technology, vol. 34, no. 2, pp.269-277, (2016).
[183] P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, High-speed and temperaturestable, oxide-confined 980-nm vcsels for optical interconnects,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp.1701207-1701207, (2013).
[184] P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm vcsels," Journal of Lightwave Technology, vol. 33, no. 4, pp.825-831, 2015.[185] R. Rosales, M. Zorn, and J. A. Lott, "30-ghz bandwidth with directly current-modulated 980- nm oxide-aperture vcsels,, IEEE Photonics Technology Letters, vol. 29, no. 23, pp.2107-2110, (2017).
[186] N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, Simplicity VCSELs,, in Vertical-Cavity Surface-Emitting Lasers XXII (C. Lei and K. D. Choquette, eds.), vol. 10552, pp.119-127, International Society for Optics and Photonics, SPIE, (2018).
DOI: 10.1117/12.2295028
[187] N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, High speed 1.1-μm-range ingaas-based vcsels,, IEICE Transactions, vol. 92-C, pp.942-950, 07 (2009).
[188] R. Safaisini, E. Haglund, P. Westbergh, J. Gustavsson, and A. Larsson, 20 gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter vcsel,, Electronics Letters, vol. 50, pp.40-42, 01 (2014).
DOI: 10.1049/el.2013.2774
[189] D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, Techno-economic comparison of silicon photonics and multimode vcsels,, J. Lightwave Technol., vol. 34, pp.233-242, Jan (2016).
[190] H. Liu, C. F. Lam, and C. Johnson, Scaling optical interconnects in datacenter networks opportunities and challenges for wdm,, in 2010 18th IEEE Symposium on High Performance Interconnects, pp.113-116, (2010).
DOI: 10.1109/hoti.2010.15
[191] M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, Design and characteristics of highpower (>0.5-w cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular tem/sub 00/ beams,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 3, pp.561-573, (1999).
DOI: 10.1109/2944.788419
[192] A. Shchegrov, A. Umbrasas, J. Watson, D. Lee, C. Amsden, W. Ha, G. Carey, V. Doan, B. Moran, A. Lewis, and A. Mooradian, 532-nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers,, Proc SPIE, vol. 5332, pp.151-156, 07 (2004).
DOI: 10.1117/12.529449
[193] Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, Lasing characteristics of low-threshold oxide confinement ingaas-gaalas vertical-cavity surfaceemitting lasers,, IEEE Photonics Technology Letters, vol. 7, no. 11, pp.1234-1236, (1995).
DOI: 10.1109/68.473456
[194] K. L. Lear, K. D. Choquette, R. P. Schneider, S. P. Kilcoyne, and K. M. Geib, Selectively oxidised vertical cavity surface emitting lasers with 50 % power conversion efficiency,, Electronics Letters, vol. 31, no. 3, pp.208-209, (1995).
DOI: 10.1049/el:19950125
[195] R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, 57wavelength gaas vcsels,, Electronics Letters, vol. 33, no. 4, pp.330-331, (1997).
DOI: 10.1049/el:19970193
[196] K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, Monolithic high-contrast metastructure for beam-shaping vcsels,, Optica, vol. 5, pp.10-13, Jan (2018).
[197] H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, Orbital angular momentum vertical-cavity surface-emitting lasers," Optica, vol. 2, pp.547-552, Jun 2015.[198] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, "85-fj dissipated energy per bit at 30 gb/s across 500-m multimode fiber using 850-nm vcsels,, IEEE Photonics Technology Letters, vol. 25, no. 16, pp.1638-1641, (2013).
[199] N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, Anti–waveguiding vertical–cavity surface–emitting laser at 850 nm: From concept to advances in high–speed data transmission,, Opt. Express, vol. 26, pp.445-453, Jan (2018).
DOI: 10.1364/oe.26.000445
[200] G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, 54 gbit/s ook transmission using single-mode vcsel up to 2.2 km mmf,, Electronics Letters, vol. 52, no. 8, pp.633-635, (2016).
DOI: 10.1049/el.2015.4264
[201] A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,, Applied Physics Letters - APPL PHYS LETT, vol. 94, 05 (2009).
DOI: 10.1063/1.3136859
[202] A. Liu, W. Chen, H. Qu, B. Jiang, W. Zhou, M. Xing, and W. Zheng, Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,, Laser Physics Letters, vol. 7, pp.213-217, mar (2010).
[203] A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,, Journal of Physics D: Applied Physics, vol. 44, p.239501, may (2011).
[204] R. Puerta, M. Agustin, �Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, Effective 100 gb/s im/dd 850-nm multi- and single-mode vcsel transmission through om4 mmf,, Journal of Lightwave Technology, vol. 35, no. 3, pp.423-429, (2017).
[205] I. Lu, C. Wei, H. Chen, K. Chen, C. Huang, K. Chi, J. Shi, F. Lai, D. Hsieh, H. Kuo, W. Lin, S. Chiu, and J. Chen, Very high bit-rate distance product using high-power single-mode 850- nm vcsel with discrete multitone modulation formats through om4 multimode fiber,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp.444-452, (2015).