Vertical Cavity Surface Emitting Lasers as Sources for Optical Communication Systems: A Review

Article Preview

Abstract:

Next generation integrated photonic circuits will be dominated by small footprint devices with lower power consumption, low threshold currentsand high efficiencies. Vertical Cavity Surface Emitting Lasers (VCSELs) having those attractive qualities has shown results to meet the next generation demands for optical communication sources. VCSELs applications are sensors, data com, optical communication, spectroscopy, printers, optical storage, laser displays, atomic optical clocks, laser radar, optical signal processing to name a few. This review centres around on the basic operation of semiconductor lasers, structure analysis of the devices and parameter optimisation for optical communication systems. This paper will provide comparisons on growth techniques and material selection and intends to give the best material realisation for nano optical sources that are up to date as used in optical communication systems. It also provides summarised improvements by other research groups in realisation of VCSELs looking at speeds, efficiency, temperature dependence and the device physical dimensions. Different semiconductor device growth methods, light emitting materials and VCSELs state of art are reviewed. Discussions and a comparisons on different methods used for realising VCSELs are also looked into in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-96

Citation:

Online since:

December 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. B. Werner Hofmann, Vcsel-based light sources-scalability challenges for vcsel-based multi-100-gb/s systems,, IEEE Photonics Journal, vol. 4, October (2012).

DOI: 10.1109/jphot.2012.2218588

Google Scholar

[2] S. Chuang and D. Bimberg, Metal-cavity nanolasers,, IEEE Photonics Journal, vol. 3, pp.288-292, April (2011).

DOI: 10.1109/jphot.2011.2138690

Google Scholar

[3] M. Z. S. C. E. S. A. Matsudaira, C-Y. Lu and D. Bimberg, Cavity-volume scaling law of quantum-dot metal-cavity surface-emitting microlasers," IEEE Photonics Journal, vol. 4, pp.1103-1114.

DOI: 10.1109/jphot.2012.2202315

Google Scholar

[5] J. Harris, T. O'Sullivan, T. Sarmiento, M. Lee, and S. Vo, Emerging applications for vertical cavity surface emitting lasers,, Semiconductor Science and Technology, vol. 26, p.014010, 11 (2010).

DOI: 10.1088/0268-1242/26/1/014010

Google Scholar

[6] W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, 1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,, IEEE Photonics Technology Letters, vol. 20, no. 4, pp.291-293, (2008).

DOI: 10.1109/lpt.2007.915631

Google Scholar

[7] W. Y. G. L. D. Francis, H.-L. Chen and C. Chang-Hasnain, Monolithic 2d-vcsel array with >2w cw and > 5w pulsed output power,, Electron. Lett, vol. 34, pp.2132-2133, October (1998).

DOI: 10.1049/el:19981517

Google Scholar

[8] V. K. A. M. G. X. J. W. P. P. J-F. Seurin, C. Ghosh and L. D'Asaro, High-power highefficiency 2d vcsel array,, Proc.SPIE, vol. 6908, pp.690-808, (2008).

Google Scholar

[9] M.-C. Amann and W. Hofmann, Inp-based long-wavelength vcsels and vcsel arrays,, IEEE J. Sel. Topics Quatum Electron, vol. 15, pp.861-868, May/June (2009).

DOI: 10.1109/jstqe.2009.2013182

Google Scholar

[10] A. Liu, P. Wolf, J. Lott, and D. Bimberg, Vertical-cavity surface-emitting lasers for data communication and sensing,, Photonics Research, vol. 7, p.121, 02 (2019).

DOI: 10.1364/prj.7.000121

Google Scholar

[11] K. A. E., Laser Generation, ch. 1, pp.1-25. John Wiley Sons, Ltd, (2008).

Google Scholar

[12] K. Iga, Surface-emitting laser-its birth and generation of new optoelectronics field,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp.1201-1215, (2000).

DOI: 10.1109/2944.902168

Google Scholar

[13] M. O. Manasreh, Opto electronic if semiconductors and superlattices,, in SEMICONDUCTOR QUANTUM WELLS INTERMIXING Volume 8, p.572, GORDON AND BREACH SCIENCE.

Google Scholar

[14] B. G. Streetman and B. Sanjay Kumar, Solid state electronic devices,, in A Solid State Electronic Devices seventh edition, pp.21-42, Pearson Education Limited, (2016).

Google Scholar

[15] N. Ashcroft and N. D. Mermin, Solid state physics,, in Solid State Physics, Philadelphia: W. B. Saunders, (1976).

Google Scholar

[16] C. Kittel, Introduction to solid state physics,, in Introduction to Solid State Physics, New York: Wiley, (1996).

Google Scholar

[17] M. D. D. Plummer, J. D. and P. B. Griffin, Silicon vlsi technology,, in Silicon VLSI Technology, Ipper Saddle River,NJ: Prentice Hall, (2000).

Google Scholar

[18] G. B. Stringfellow, Organometallic vapor-phase epitaxy,, in Organometallic Vapor-Phase Epitaxy, New york: Academic Press, (1989).

DOI: 10.1016/b978-0-12-673840-7.50004-x

Google Scholar

[19] V. Swaminathan and A. T. Macrander., Material aspects of gaas and inp based structures," in Material Aspects of GaAs and InP Based Structures, Englewood Cliffs, NJ: Prentice Hall, 1991.[20] C. W. Wilmsen, "Physics and chemistry of iii-v compound semiconductor interfaces,, in Physics and Chemistry of III-V Compound Semiconductor Interfaces, p.153, Plenum press.

DOI: 10.1007/978-1-4684-4835-1_7

Google Scholar

[21] W. Hofmann, InP-based long-wavelength VCSELs and VCSEL array for high-speed optical communication, pp.25-40. Technische Univ, (2009).

Google Scholar

[22] J. Buus and M.-C. Amann, Tunable Laser Diodes and Related Optical Sources. Weinheim, Germany: Wiley-VCH, (2005).

Google Scholar

[23] B. Tell, K. Brown, Goebeler, R. Leibenguth, F. Baez, and Y. H. Lee, Temperature dependence of gaas, algaas vertical cavity surface emitting lasers,, Applied Physics Letters, vol. 60, pp.683-685, 03 (1992).

DOI: 10.1063/1.106536

Google Scholar

[24] J. P. van der Ziel and M. Ilegems, Multilayer gaas-al0.3ga0.7as dielectric quarter wave stacks grown by molecular beam epitaxy,, Appl. Opt., vol. 14, pp.2627-2630, Nov (1975).

DOI: 10.1364/ao.14.002627

Google Scholar

[25] M. Ogura, T. Hata, N. J. Kawai, and T. Yao, GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,, Japanese Journal of Applied Physics, vol. 22, pp. L112-L114, feb (1983).

DOI: 10.1143/jjap.22.l112

Google Scholar

[26] M. Ogura, T. Hata, and T. Yao, Distributed feed back surface emitting laser diode with multilayered heterostructure,, Japanese Journal of Applied Physics, vol. 23, pp. L512-L514, jul (1984).

DOI: 10.1143/jjap.23.l512

Google Scholar

[27] M. Ogura and T. Yao, Surface emitting laser diode with alxga1-xas /gaas multilayered heterostructure,, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol. 3, pp.784-787, 04 (1985).

DOI: 10.1116/1.583099

Google Scholar

[28] K. Iga, S. Kinoshita, and F. Koyama, Microcavity galaas/gaas surface-emitting laser with ith = 6 ma,, Electronics Letters, vol. 23, no. 3, pp.134-136, (1987).

DOI: 10.1049/el:19870095

Google Scholar

[29] T. Sakaguchi, F. Koyama, and K. Iga, Vertical cavity surface-emitting laser with an algaas/alas bragg reflector,, Electronics Letters, vol. 24, no. 15, pp.928-929, (1988).

DOI: 10.1049/el:19880632

Google Scholar

[30] P. L. Gourley and T. J. Drummond, Visible, room-temperature, surface-emitting laser using an epitaxial Fabry-Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,, Applied Physics Letters, vol. 50, pp.1225-1227, May (1987).

DOI: 10.1063/1.97916

Google Scholar

[31] J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,, Electronics Letters, vol. 25, no. 17, pp.1123-1124, (1989).

DOI: 10.1049/el:19890754

Google Scholar

[32] Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,, Electronics Letters, vol. 25, no. 20, pp.1377-1378, (1989).

DOI: 10.1049/el:19890921

Google Scholar

[33] Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, Top-surface-emitting gaas four-quantum-well lasers emitting at 0.85 mu m," Electronics Letters, vol. 26, no. 11, pp.710-711, 1990.[34] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, "Low threshold planarized vertical-cavity surface-emitting lasers,, IEEE Photonics Technology Letters, vol. 2, no. 4, pp.234-236, (1990).

DOI: 10.1049/el:19900463

Google Scholar

[35] J. Dallesasse, N. Holonyak, A. Sugg, T. Richard, and N. El-Zein, Hydrolyzation oxidation of alxga1-xas-alas-gaas quantum well heterostructures and superlattices,, Applied Physics Letters, vol. 57, pp.2844-2846, 01 (1991).

DOI: 10.1063/1.103759

Google Scholar

[36] D. Huffaker, D. Deppe, K. Kumar, and T. Rogers, Native-oxide ring contact for low threshold vertical-cavity lasers,, Applied Physics Letters, vol. 65, pp.97-99, 08 (1994).

DOI: 10.1063/1.113087

Google Scholar

[37] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, Advances in selective wet oxidation of algaas alloys,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 3, pp.916-926, (1997).

DOI: 10.1109/2944.640645

Google Scholar

[38] J. Dallesasse and J. Holonyak, Oxidation of al-bearing iii-v materials: A review of key progress,, Journal of Applied Physics, vol. 113, 02 (2013).

DOI: 10.1063/1.4769968

Google Scholar

[39] I. Melngailis, Longitudinal Injection-Plasma Laser of InSb,, Applied Physics Letters, vol. 6, pp.59-60, Feb. (1965).

DOI: 10.1063/1.1754164

Google Scholar

[40] J. S. Eng and C. Kocot, Surface emitting laser,, IEICE, C-I, pp.483-493, 9 (1998).

Google Scholar

[41] H. Soda, K. ichi Iga, C. Kitahara, and Y. Suematsu, GaInAsP/InP surface emitting injection lasers,, Japanese Journal of Applied Physics, vol. 18, pp.2329-2330, dec (1979).

DOI: 10.1143/jjap.18.2329

Google Scholar

[42] D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, and K. Iga, 1.17-μm highly strained gainasgaas quantum-well laser,, IEEE Photonics Technology Letters, vol. 11, pp.946-948, (1999).

DOI: 10.1109/68.775308

Google Scholar

[43] P. G. S. P. A. C. J.-M. G. G. B. R. S. R. H. M. H. J. B. E. Pougeoise, Ph. Gilet and P. Sundgren, Strained ingaas quantum well vertical cavity surface emitting lasers emitting at 1.3 μm,, Electron Letters, vol. 42, pp.584-586, 05 (2006).

DOI: 10.1049/el:20060060

Google Scholar

[44] N. Niskiyama, M. Arai, S. Shinada, M. Azuchi, T. Miyamoto, F. Koyama, and K. Iga, Highly strained gainas-gaas quantum-well vertical-cavity surface-emitting laser on gaas (311)b substrate for stable polarization operation,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 2, pp.242-248, (2001).

DOI: 10.1109/2944.954136

Google Scholar

[45] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnstrm, E. Odling, and J. Malmquist, 1260 nm ingaas vertical-cavity lasers,, Electronics Letters, vol. 38, no. 13, pp.635-636, (2002).

DOI: 10.1049/el:20020431

Google Scholar

[46] H.-C. Kuo, Y. Chang, H. Yao, Y. Chang, F.-I. Lai, M. Tsai, and S.-C. Wang, High-speed modulation of ingaas: Sb-gaas-gaasp quantum-well vertical-cavity surface-emitting lasers with 1.27-μm emission wavelength,, Photonics Technology Letters, IEEE, vol. 17, pp.528-530, 04 (2005).

DOI: 10.1109/lpt.2004.840042

Google Scholar

[47] R. Marcks von Würtemberg, P. Maly Sundgren, J. Berggren, M. Hammar, M. Ghisoni, E. Ödling, V. Oscarsson, and J. Malmquist, 1.3 μm ingaas vertical-cavity surface-emitting lasers with mode filter for single mode operation," Applied Physics Letters, vol. 85, pp.4851-4853.

DOI: 10.1063/1.1823012

Google Scholar

[49] M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,, Applied Physics Letters, vol. 76, pp.2179-2181, 04 (2000).

DOI: 10.1063/1.126290

Google Scholar

[50] V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, Highpower 1320-nm wafer-bonded vcsels with tunnel junctions,, IEEE Photonics Technology Letters, vol. 15, no. 11, pp.1495-1497, (2003).

DOI: 10.1109/lpt.2003.818652

Google Scholar

[51] C.-K. Lin, D. P. Bour, J. Zhu, W. Perez, M. H. Leary, A. Tandon, S. Corzine, and M. R. T. Tan, High temperature continuous-wave operation of 1.3-1.55 /spl mu/m vcsels with inp/air-gap dbrs,, IEEE 18th International Semiconductor Laser Conference, pp.145-146, (2002).

DOI: 10.1109/islc.2002.1041158

Google Scholar

[52] N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. . Li, R. Bhat, and C. E. Zah, Long-wavelength vertical-cavity surface-emitting lasers on inp with lattice matched algainas-inp dbr grown by mocvd,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 5, pp.990-998, (2005).

DOI: 10.1109/jstqe.2005.853841

Google Scholar

[53] Julian Cheng, Chan-Long Shieh, Xiaodong Huang, Guoli Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, Efficient cw lasing and high-speed modulation of 1.3-μm algainas vcsels with good high temperature lasing performance,, IEEE Photonics Technology Letters, vol. 17, no. 1, pp.7-9, (2005).

DOI: 10.1109/lpt.2004.837474

Google Scholar

[54] M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, Long-wavelength vcsel-based cwdm scheme for 10-gbe links,, IEEE Photonics Technology Letters, vol. 17, no. 6, pp.1286-1288, (2005).

DOI: 10.1109/lpt.2005.846944

Google Scholar

[55] V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C. . Berseth, A. Syrbu, A. Rudra, and E. Kapon, High-performance single-mode vcsels in the 1310-nm waveband,, IEEE Photonics Technology Letters, vol. 17, no. 5, pp.947-949, (2005).

DOI: 10.1109/lpt.2005.845654

Google Scholar

[56] W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. . Amann, 10-gb/s data transmission using bcb passivated 1.55-μm ingaalas-inp vcsels,, IEEE Photonics Technology Letters, vol. 18, no. 2, pp.424-426, (2006).

DOI: 10.1109/lpt.2005.863184

Google Scholar

[57] J. Boucart, G. Suruceanu, P. Royo, V. I. Iakovlev, A. Syrbu, A. Caliman, A. Mereuta, A. Mircea, C. . Berseth, A. Rudra, and E. Kapon, 3.125-gb/s modulation up to 70/spl deg/c using 1.3- /spl mu/m vcsels fabricated with localized wafer fusion for 10gbase lx4 applications,, IEEE Photonics Technology Letters, vol. 18, no. 4, pp.571-573, (2006).

DOI: 10.1109/lpt.2005.863980

Google Scholar

[58] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, Continuous-wave operation of 1.30 [micro sign]m gaassb/gaas vcsels,, Electronics Letters, vol. 37, pp.566-567, 05 (2001).

DOI: 10.1049/el:20010405

Google Scholar

[59] D. C. Kilper, F. Quochi, J. E. Cunningham, and M. Dinu, High-speed dynamics of gaassb vertical-cavity lasers," IEEE Photonics Technology Letters, vol. 14, no. 4, pp.438-440, 2002.[60] P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi, and Y. . Zhang, "Long wavelength gaasp/gaas/gaassb vcsels on gaas substrates for communications applications,, Electronics Letters, vol. 39, no. 13, pp.987-988, (2003).

DOI: 10.1049/el:20030664

Google Scholar

[61] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance,, Japanese Journal of Applied Physics, vol. 35, pp.1273-1275, feb (1996).

DOI: 10.1143/jjap.35.1273

Google Scholar

[62] K. Choquette, J. Klem, A. Fischer, O. Blum, A. Allerman, I. Fritz, S. Kurtz, W. Breiland, R. Sieg, K. Geib, J. Scott, and R. Naone, Room temperature continuous wave ingaasn quantum well vertical-cavity lasers emitting at 1.3 μm,, Electronics Letters, vol. 36, pp.1388-1390, 09 (2000).

DOI: 10.1049/el:20000928

Google Scholar

[63] T. Kageyama, T. Miyamoto, S. Makino, N. Nishiyama, F. Koyama, and K. Iga, Hightemperature operation up to 170 °c of gainnas-gaas quantum-well lasers grown by chemical beam epitaxy,, Photonics Technology Letters, IEEE, vol. 12, pp.10-12, 02 (2000).

DOI: 10.1109/68.817430

Google Scholar

[64] A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, Oc-48 capable ingaasn vertical cavity lasers,, Electronics Letters, vol. 37, no. 6, pp.355-356, (2001).

DOI: 10.1049/el:20010232

Google Scholar

[65] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, and G. Ebbinghaus, Electrically pumped 10 gbit/s movpe-grown monolithic 1.3 mu m vcsel with gainnas active region,, Electronics Letters, vol. 38, pp.322-324, 04 (2002).

DOI: 10.1049/el:20020226

Google Scholar

[66] T. Takeuchi, Y.-L. Chang, M. Leary, A. Tandon, H. Luan, D. Bour, S. Corzine, R. Twist, and M. Tan, 1.3 μm ingaasn vertical cavity surface emitting lasers grown by mocvd,, Electronics Letters, vol. 38, pp.1438-1440, 12 (2002).

DOI: 10.1049/el:20021000

Google Scholar

[67] T. Nishida, M. Takaya, S. Kakinuma, and T. Kaneko, 4.2-mw gainnas long-wavelength vcsel grown by metalorganic chemical vapor deposition,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 5, pp.958-961, (2005).

DOI: 10.1109/jstqe.2005.853734

Google Scholar

[68] J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, and T. Fanning, 1310nm vcsels in 1-10gb/s commercial applications,, Proc. SPIE, vol. 6132, 02 (2006).

DOI: 10.1117/12.660840

Google Scholar

[69] M. A. Wistey, S. R. Bank, H. P. Bae, H. B. Yuen, E. R. Pickett, L. L. Goddard, and J. S. Harris, Gainnassb/gaas vertical cavity surface emitting lasers at 1534 nm,, Electronics Letters, vol. 42, no. 5, pp.282-283, (2006).

DOI: 10.1049/el:20064455

Google Scholar

[70] J. Lott, N. Ledentsov, V. Ustinov, N. Maleev, A. Zhukov, A. Kovsh, M. Maximov, B. Volovik, Z. Alferov, and D. Bimberg, "Inas-ingaas quantum dot vcsels on gaas substrates emitting at 1.3.

DOI: 10.1049/el:20000988

Google Scholar

[71] A. N. AL-Omari and K. L. Lear, Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-ghz bandwidth," IEEE Photonics Technology Letters, vol. 16, no. 4, pp.969-971.

DOI: 10.1109/lpt.2004.824622

Google Scholar

[73] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, 15.6-gb/s transmission over 1 km of next generation multimode fiber,, IEEE Photonics Technology Letters, vol. 14, no. 5, pp.717-719, (2002).

DOI: 10.1109/68.998736

Google Scholar

[74] C. J. Chang-Hasnain, J. P. Harbison, C. . Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. . Lee, Multiple wavelength tunable surface-emitting laser arrays,, IEEE Journal of Quantum Electronics, vol. 27, no. 6, pp.1368-1376, (1991).

DOI: 10.1109/3.89953

Google Scholar

[75] F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, Wavelength control of vertical cavity surface-emitting lasers by using nonplanar mocvd,, IEEE Photonics Technology Letters, vol. 7, no. 1, pp.10-12, (1995).

DOI: 10.1109/68.363392

Google Scholar

[76] L. E. Eng, K. Bacher, Wupen Yuen, J. S. Harris, and C. J. Chang-Hasnain, Multiplewavelength vertical cavity laser arrays on patterned substrates,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 2, pp.624-628, (1995).

DOI: 10.1109/2944.401250

Google Scholar

[77] G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surfacecontrolled mocvd growth rate enhancement and reduction,, IEEE Photonics Technology Letters, vol. 9, no. 8, pp.1069-1071, (1997).

DOI: 10.1109/68.605502

Google Scholar

[78] Kai Yang, Yuxin Zhou, X. D. Huang, C. P. Hains, and Julian Cheng, Monolithic oxideconfined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper bragg mirror,, IEEE Photonics Technology Letters, vol. 12, no. 4, pp.377-379, (2000).

DOI: 10.1109/68.839024

Google Scholar

[79] F. Koyama, Recent advances of vcsel photonics,, Journal of Lightwave Technology, vol. 24, no. 12, pp.4502-4513, (2006).

DOI: 10.1109/jlt.2006.886064

Google Scholar

[80] H. Li, P. Wolf, P. Moser, G. Larisch, J. Lott, and D. Bimberg, Vertical-cavity surface-emitting lasers for optical interconnects,, SPIE Newsroom, 11 (2014).

DOI: 10.1117/2.1201411.005689

Google Scholar

[81] Y. Yamazoe, T. Nishino, Y. Hamakawa, and T. Kariya, Bandgap energy of InGaAsP quaternary alloy,, Japanese Journal of Applied Physics, vol. 19, pp.1473-1479, aug (1980).

DOI: 10.1143/jjap.19.1473

Google Scholar

[82] C. W. R. O'Shea, D. C. and W. T. Rhodes, Introduction to Lasers and Their Applications. Addison-Wesley, Reading, MA., (1977).

Google Scholar

[83] H. Casey and M. Panish, Chapter 4 - heterojunctions,, in Heterostructure Lasers (H. Casey and M. Panish, eds.), pp.187-255, Academic Press, (1978).

DOI: 10.1016/b978-0-12-163101-7.50011-6

Google Scholar

[84] J. T. Luxon and D. E. Parker, Industrial Lasers and Their Applications. Prentice Hall, Englewood Cliffs, NJ., (1985).

Google Scholar

[85] P. Berlien and G. Müller, Applied Laser Medicine. 01 2003.[86] G. Chryssolouris, Laser machining - Theory and practice. 01 (1991).

Google Scholar

[87] M. Goeppert-Mayer, Annalenden physik,, vol. 9, p.273, (1931).

Google Scholar

[88] Bhattacharya, Semiconductor Optoelectronics Devices. Prentice Hall: Engle wood Cliffs, (1994).

Google Scholar

[89] A. R. Henderson, A Guide to Laser Safety. Chapman and Hall, London, (1997).

Google Scholar

[90] B. B. Laud, Lasers and Non-Linear Optics. Wiley Eastern Limited, New Delhi, (1985).

Google Scholar

[91] K. Shimoda, Introduction to Laser Physics, 2nd edition. Springer-Verlag, Berlin., (1986).

Google Scholar

[92] K. Thyagarajan and A. K. Ghatak, Lasers, Theory and Applications. Plenum press,New York, (1981).

Google Scholar

[93] J. Wilson and J. F. B. Hawkes, Lasers: Principles and Applications. Prentice Hall,New York, (1987).

Google Scholar

[94] O. Svelto, Principles of Lasers , 3rd edition. Plenum press,New York, (1989).

Google Scholar

[95] E. K.-A. Jr, Principles of Laser Material Processing. John Wiley Sons, inc., Hoboken, New Jersey, (2000).

Google Scholar

[96] K. A. E., Rate Equations, ch. 4, pp.71-82. John Wiley Sons, Ltd, (2008).

Google Scholar

[97] N. W. Barret, C.R. and A. S. Tetelman, The Principles of Engineering Materials. Prentice Hall, Englewood Cliffs, NJ, (1973).

Google Scholar

[98] E. O. Odoh1 and A. S. Njapba2, A review of semiconductor quantum well devices,, IRnova, vol. 46, (2015).

Google Scholar

[99] Dynamic Effects, ch. Five, pp.247-333. John Wiley Sons, Ltd, (2012).

Google Scholar

[100] I. Suemune, Theoretical study of differential gain in strained quantum well structures,, IEEE Journal of Quantum Electronics, vol. 27, no. 5, pp.1149-1159, (1991).

DOI: 10.1109/3.83371

Google Scholar

[101] P. Westbergh, J. S. Gustavsson, A. Haglund, M. Skold, A. Joel, and A. Larsson, High-speed, low-current-density 850 nm vcsels,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp.694-703, (2009).

DOI: 10.1109/jstqe.2009.2015465

Google Scholar

[102] S. Healy, E. O'Reilly, J. Gustavsson, P. Westbergh, A. Haglund, A. Larsson, and A. Joel, Active region design for high-speed 850-nm vcsels,, Quantum Electronics, IEEE Journal of, vol. 46, pp.506-512, 05 (2010).

DOI: 10.1109/jqe.2009.2038176

Google Scholar

[103] P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, Impact of photon lifetime on high-speed vcsel performance,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, pp.1603-1613, (2011).

DOI: 10.1109/jstqe.2011.2114642

Google Scholar

[104] G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, Impact of photon lifetime on the temperature stability of 50 gb/s 980 nm vcsels,, IEEE Photonics Technology Letters, vol. 28, no. 21, pp.2327-2330, (2016).

DOI: 10.1109/lpt.2016.2592985

Google Scholar

[105] W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, 44 gb/s vcsel for optical interconnects," 03 2011.[106] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, "85 °c errorfree operation at 38 gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,, Applied Physics Letters, vol. 100, 02 (2012).

DOI: 10.1063/1.3688040

Google Scholar

[107] H. Then, C. Wu, M. Feng, and N. Holonyak, Microwave characterization of purcell enhancement in a microcavity laser,, Applied Physics Letters, vol. 96, pp.131107-131107, 04 (2010).

DOI: 10.1063/1.3377913

Google Scholar

[108] A. Larsson, Advances in vcsels for communication and sensing,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, pp.1552-1567, (2011).

DOI: 10.1109/jstqe.2011.2119469

Google Scholar

[109] P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, Low series resistance high-efficiency gaas/algaas vertical-cavity surface-emitting lasers with continuously graded mirrors grown by mocvd,, IEEE Photonics Technology Letters, vol. 3, no. 7, pp.591-593, (1991).

DOI: 10.1109/68.87923

Google Scholar

[110] M. Afromowitz, Thermal conductivity of ga1-xalxas alloys,, Journal of Applied Physics, vol. 44, pp.1292-1294, 04 (1973).

Google Scholar

[111] K. M. Lascola, W. Yuen, and C. J. Chang-Hasnain, Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application, pp.79-80, (1997).

DOI: 10.1109/leosst.1997.619114

Google Scholar

[112] A. Al-Omari, M. S. Alias, A. Ababneh, and K. Lear, Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm vcsels with copper-plated heat sinks,, Journal of Physics D: Applied Physics, vol. 45, p.505101, 11 (2012).

DOI: 10.1088/0022-3727/45/50/505101

Google Scholar

[113] R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, Thermal resistance of vcsels bonded to integrated circuits,, IEEE Photonics Technology Letters, vol. 11, no. 12, pp.1554-1556, (1999).

DOI: 10.1109/68.806844

Google Scholar

[114] E. Schubert, L.-W. Tu, G. Zydzik, R. Kopf, A. Benvenuti, and M. Pinto, Elimination of heterojunction band discontinuities by modulation doping,, Applied Physics Letters, vol. 60, pp.466-468, 02 (1992).

DOI: 10.1063/1.106636

Google Scholar

[115] Y. . Chang, C. S. Wang, and L. A. Coldren, High-efficiency, high-speed vcsels with 35 gbit=s error-free operation,, Electronics Letters, vol. 43, no. 19, pp.1022-1023, (2007).

DOI: 10.1049/el:20072074

Google Scholar

[116] M. Azuchi, N. Jikutani, M. Arai, T. Kondo, and F. Koyama, Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,, in CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), vol. 1, p.163 Vol.1-, (2003).

DOI: 10.1109/cleopr.2003.1274625

Google Scholar

[117] Y. c. Chang, C. s. Wang, L. A. Johansson, and L. A. Coldren, High-efficiency, high-speed vcsels with deep oxidation layers,, Electronics Letters, vol. 42, no. 22, pp.1281-1282, (2006).

DOI: 10.1049/el:20062538

Google Scholar

[118] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, 25gbit/s operation of ingaas-based vcsels," Electronics Letters, vol. 42, pp.975-976, 02 2006.[119] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, "Analog modulation properties of oxide confined vcsels at microwave frequencies,, Journal of Lightwave Technology, vol. 20, no. 9, pp.1740-1749, (2002).

DOI: 10.1109/jlt.2002.802223

Google Scholar

[120] J. Nanni, F. Pizzuti, G. Tartarini, J.-L. Polleux, and C. Algani, Vcsel-ssmf-based radio-overfiber link for low cost and low consumption wireless dense networks,, pp.1-4, 10 (2017).

DOI: 10.1109/mwp.2017.8168720

Google Scholar

[121] W. Lin, H.-P. Shiao, C.-Y. Chang, T.-T. Shi, C.-T. Lee, and Y.-K. Tu, Energy band structure tailoring of ingaasp/ingaasp quantum well prepared by organometallic vapor phase epitaxy and measured by photoluminescence,, pp.4-9, 02 (1994).

DOI: 10.1109/edms.1994.771210

Google Scholar

[122] K. K. H. Kawai, Surface and interface analysis,, july (1990).

Google Scholar

[123] C. G. Van de Walle, Band lineups and deformation potentials in the model-solid theory,, Phys. Rev. B, vol. 39, pp.1871-1883, Jan (1989).

DOI: 10.1103/physrevb.39.1871

Google Scholar

[124] Y. K. T. W. Lin, Internal technical report,,.

Google Scholar

[125] T. A. D. W. J. H.-G. Y. L. W. Lin, Y. K. Tu and J. H. P, Shiao, Cryst growth,, vol. 123, (1992).

Google Scholar

[126] N. El-Zein and B. McDermott, Interface and material-quality study of ingaasp/inp and ingaasp1/ingaasp2 superlattices,, Conference Proceedings - International Conference on Indium Phosphide and Related Materials, 01 (2003).

DOI: 10.1109/iciprm.2003.1205404

Google Scholar

[127] S. Pradana, A. Syahriar, A. H. Lubis, and S. Rahardjo, Comparison power of semiconductor lasers at wavelength 1480nm using ingaas ingaasp materials for edfa pumping scheme,, in 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), pp.1-5, (2018).

DOI: 10.1109/icscee.2018.8538404

Google Scholar

[128] R. Faez, A. Marjani, and S. Marjani, Design and simulation of a high power single mode 1550nm InGaAsP VCSELs,, IEICE Electronics Express, vol. 8, no. 13, pp.1096-1101, (2011).

DOI: 10.1587/elex.8.1096

Google Scholar

[129] J. Piprek, D. Babic, and J. Bowers, Simulation and analysis of 1.55 μm double-fused verticalcavity lasers,, Journal of Applied Physics, vol. 81, pp.3382-3390, 05 (1997).

DOI: 10.1063/1.365033

Google Scholar

[130] K. Kandiah, P. S. Menon, S. Shaari, and B. Majlis, Design and modeling of a vertical-cavity surface-emitting laser (vcsel),, pp.297-301, 12 (2008).

DOI: 10.1109/smelec.2008.4770327

Google Scholar

[131] N. Nishiyama, M. Arai, S. Shinada, T. Miyamoto, F. Koyama, and K. Iga, Growth and optical properties of highly strained gainas/gaas quantum wells on (3 1 1)b gaas by mocvd,, Journal of Crystal Growth - J CRYST GROWTH, vol. 221, pp.530-534, 12 (2000).

DOI: 10.1016/s0022-0248(00)00764-8

Google Scholar

[132] H. Nasu, Short-reach optical interconnects employing high-density parallel-optical modules,, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 16, pp.1337-1346, 11 (2010).

DOI: 10.1109/jstqe.2010.2049344

Google Scholar

[133] K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, 1.1- µm -range high-speed tunnel junction vertical-cavity surface-emitting lasers,, IEEE Photonics Technology Letters, vol. 19, pp.1883-1885, (2007).

DOI: 10.1109/lpt.2007.908663

Google Scholar

[134] Y. Chang and L. A. Coldren, Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp.704-715, 2009.[135] T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, "High-speed 1.1-µm-range ingaas vcsels,, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, p. OThS5, Optical Society of America, (2008).

DOI: 10.1109/ofc.2008.4528532

Google Scholar

[136] R. H. Johnson and D. M. Kuchta, 30 gb/s directly modulated 850 nm datacom vcsels,, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p. CPDB2, Optical Society of America, (2008).

DOI: 10.1109/cleo.2008.4551302

Google Scholar

[137] P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, 32 gbit/s multimode fibre transmission using high-speed, low current density 850 nm vcsel,, Electronics Letters, vol. 45, pp.366-368, 04 (2009).

DOI: 10.1049/el.2009.0201

Google Scholar

[138] A. Mutig, S. Blokhin, A. Nadtochiy, G. Fiol, J. Lott, V. Shchukin, N. Ledentsov, and D. Bimberg, Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,, Applied Physics Letters, vol. 95, pp.131101-131101, 09 (2009).

DOI: 10.1063/1.3231446

Google Scholar

[139] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, Oxide-confined 850 nm vcsels operating at bit rates up to 40 gbit/s,, Electronics Letters, vol. 45, no. 10, pp.501-503, (2009).

DOI: 10.1049/el.2009.0552

Google Scholar

[140] P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, 40 gbit/s error-free operation of oxide-confined 850 nm vcsel,, Electronics Letters, vol. 46, no. 14, pp.1014-1016, (2010).

DOI: 10.1049/el.2010.1405

Google Scholar

[141] P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, High-speed 850 nm vcsels with 28 ghz modulation bandwidth operating error-free up to 44 gbit/s,, Electronics Letters, vol. 48, no. 18, pp.1145-1147, (2012).

DOI: 10.1049/el.2012.2525

Google Scholar

[142] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsso, and A. Larsson, Highspeed 850 nm vcsels operating error free up to 57 gbit/s,, Electronics Letters, vol. 49, no. 16, pp.1021-1023, (2013).

DOI: 10.1049/el.2013.2042

Google Scholar

[143] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, Oxide-relief and zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 gbit/s operations,, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp.7900208-7900208, 03 (2013).

DOI: 10.1109/jstqe.2012.2210863

Google Scholar

[144] F. Tan, M. Wu, M. Liu, M. Feng, and N. Holonyak, 850 nm oxide-vcsel with low relative intensity noise and 40 gb/s error free data transmission,, IEEE Photonics Technology Letters, vol. 26, no. 3, pp.289-292, (2014).

DOI: 10.1109/lpt.2013.2280726

Google Scholar

[145] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, Error-free 46 gbit/s operation of oxide-confined 980 nm vcsels at 85°c,, Electronics Letters, vol. 50, no. 19, pp.1369-1371, (2014).

DOI: 10.1049/el.2014.1703

Google Scholar

[146] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, 30 ghz bandwidth 850 nm vcsel with sub-100 fj/bit energy dissipation at 25-50 gbit/s," Electronics Letters, vol. 51, no. 14, pp.1096-1098.

DOI: 10.1049/el.2015.0785

Google Scholar

[148] M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, 850 nm oxide-confined vcsels with 50 gb/s error-free transmission operating up to 85 °c,, in Conference on Lasers and Electro-Optics, p. SF1L.6, Optical Society of America, (2016).

DOI: 10.1364/cleo_si.2016.sf1l.6

Google Scholar

[149] E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 gbit/s data rate,, Electronics Letters, vol. 53, no. 13, pp.869-871, (2017).

DOI: 10.1049/el.2017.1165

Google Scholar

[150] N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, 35 ghz bandwidth with directly current modulated 980 nm oxide aperture single cavity vcsels,, in 2018 IEEE International Semiconductor Laser Conference (ISLC), pp.1-2, (2018).

DOI: 10.1109/islc.2018.8516258

Google Scholar

[151] P. Moser, Energy-efficient vcsels for optical interconnects,, 01 (2016).

Google Scholar

[152] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, 56 fj dissipated energy per bit of oxide-confined 850 nm vcsels operating at 25 gbit/s,, Electronics Letters, vol. 48, no. 20, pp.1292-1294, (2012).

DOI: 10.1049/el.2012.2944

Google Scholar

[153] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. Lott, and D. Bimberg, Energy-efficient and temperature-stable oxide-confined 980 nm vcsels operating error-free at 38 gbit/s at 85°c,, Electronics Letters, vol. 50, pp.103-105, 01 (2014).

DOI: 10.1049/el.2013.3941

Google Scholar

[154] H. Li, P. Wolf, P. Moser, G. Larisch, J. Lott, and D. Bimberg, Temperature-stable, energyefficient, and high-bit rate oxide-confined 980-nm vcsels for optical interconnects,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp.1-9, 11 (2015).

DOI: 10.1109/jstqe.2015.2389731

Google Scholar

[155] T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, 1060nm 28-gbps vcsel developed at furukawa,, Proceedings of SPIE - The International Society for Optical Engineering, vol. 9001, 01 (2014).

DOI: 10.1117/12.2042857

Google Scholar

[156] D. A. B. Miller, Device requirements for optical interconnects to silicon chips,, Proceedings of the IEEE, vol. 97, no. 7, pp.1166-1185, (2009).

DOI: 10.1109/jproc.2009.2014298

Google Scholar

[157] A. Mutig, G. Fiol, P. Moser, F. Hopfer, M. Kuntz, V. A. Shchukin, N. N. Ledentsov, D. Bimberg, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and A. R. Kovsh, 120 °c 20 gbit/s operation of 980 nm single mode vcsel,, in 2008 IEEE 21st International Semiconductor Laser Conference, pp.9-10, (2008).

DOI: 10.1109/islc.2008.4635983

Google Scholar

[158] L. Graham, H. Chen, D. Gazula, T. Gray, J. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. Macinnes, G. Landry, and J. Tatum, The next generation of high speed vcsels at finisar,, Proceedings of SPIE - The International Society for Optical Engineering, vol. 8276, p.1-, 02 (2012).

DOI: 10.1117/12.910505

Google Scholar

[159] C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. Jackson, The next generation high data rate vcsel development at sedu," Proc SPIE, vol. 8639, p.03-, 03 2013.[160] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, "High-speed oxide confined 850-nm vcsels operating error-free at 40 gb/s up to 85�c,, IEEE Photonics Technology Letters, vol. 25, no. 8, pp.768-771, (2013).

DOI: 10.1109/lpt.2013.2250946

Google Scholar

[161] H. Li, P. Wolf, P. R. Moser, G. Larisch, J. A. Lott, and D. Bimberg, Temperature-stable 980-nm vcsels for 35-gb/s operation at 85 °c with 139-fj/bit dissipated heat,, IEEE Photonics Technology Letters, vol. 26, pp.2349-2352, (2014).

DOI: 10.1109/lpt.2014.2354736

Google Scholar

[162] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, A 50 gb/s nrz modulated 850 nm vcsel transmitter operating error free to 90 °c,, Journal of Lightwave Technology, vol. 33, no. 4, pp.802-810, (2015).

DOI: 10.1109/jlt.2014.2363848

Google Scholar

[163] M. Agustín, J.-R. Kropp, V. Shchukin, V. Kalosha, J.-W. Shi, Z. Khan, N. Jr, K.-L. Chi, and N. Ledentsov, Temperature stable oxide-confined 850-nm vcsels operating at bit rates up to 25 gbit/s at 150ºc,, p.24, 02 (2018).

DOI: 10.1117/12.2318015

Google Scholar

[164] P. R. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, 81 fj/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,, (2011).

DOI: 10.1063/1.3597799

Google Scholar

[165] J. . Shi, W. . Weng, F. . Kuo, J. . Chyi, S. Pinches, M. Geen, and A. Joel, Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,, in 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp.1-3, (2011).

DOI: 10.1364/ofc.2011.othg2

Google Scholar

[166] S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, Recorded low power dissipation in highly reliable 1060-nm vcsels for "green" optical interconnection,, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 17, pp.1614-1620, 11 (2011).

DOI: 10.1109/jstqe.2011.2114643

Google Scholar

[167] P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, Energy efficient 40 gbit/s transmission with 850 nm vcsels at 108 fj/bit dissipated heat,, Electronics Letters, vol. 49, no. 10, pp.666-667, (2013).

DOI: 10.1049/el.2013.0617

Google Scholar

[168] T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Malacarne, C. Neumeyr, A. Sitomaniemi, and J. Ollila, Optical interconnects based on vcsels and low-loss silicon photonics,, p.43, 02 (2018).

DOI: 10.1117/12.2290710

Google Scholar

[169] Po-Kuan Shen, Chin-Ta Chen, Chia-Hao Chang, Chien-Yu Chiu, Chia-Chi Chang, Hsiao-Chin Lan, Yun-Chih Lee, and Mount-Learn Wu, On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,, in OFC 2014, pp.1-3, (2014).

DOI: 10.1109/jphot.2013.2264662

Google Scholar

[170] Y. W. Xu, A. Michael, and C. Y. Kwok, Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on silicon,, in Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV (H. H. Tan, J.-C. Chiao, L. Faraone, C. Jagadish, J. Williams, and A. R. Wilson, eds.), vol. 6800, pp.400-408, International Society for Optics and Photonics, SPIE, (2008).

DOI: 10.1117/12.759343

Google Scholar

[171] R. dos Santos, D. D'Agostino, F. Soares, H. H. R. Haghighi, M. M. Smit, and X. X. Leijtens, Fabrication and characterization of a wet-etched inp-based vertical coupling mirror," 2013.[172] Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, "Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,, IET Optoelectronics, vol. 5, no. 5, pp.226-232, (2011).

DOI: 10.1049/iet-opt.2010.0054

Google Scholar

[173] D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, Vcsels with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,, Electronics Letters, vol. 40, no. 17, pp.1064-1065, (2004).

DOI: 10.1049/el:20045585

Google Scholar

[174] J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,, Applied Physics Letters, vol. 86, 03 (2005).

DOI: 10.1063/1.1880440

Google Scholar

[175] K. Kaur, A. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, Flip-chip assembly of vcsels to silicon grating couplers via laser fabricated su8 prisms,, Optics Express, vol. 23, p.28264, 10 (2015).

DOI: 10.1364/oe.23.028264

Google Scholar

[176] H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O'Brien, Flip-chip integration of tilted vcsels onto a silicon photonic integrated circuit,, Opt. Express, vol. 24, pp.16258-16266, Jul (2016).

DOI: 10.1364/oe.24.016258

Google Scholar

[177] H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, and C. Tang, Heterogeneous integration of a iii-v vcsel light source for optical fiber sensing,, Opt. Lett., vol. 41, pp.4158-4161, Sep (2016).

DOI: 10.1364/ol.41.004158

Google Scholar

[178] Y. Yang, G. Djogo, M. Haque, P. Herman, and J. Poon, Integration of an o-band vcsel on silicon photonics with polarization maintenance and waveguide coupling,, Optics Express, vol. 25, p.5758, 03 (2017).

DOI: 10.1364/oe.25.005758

Google Scholar

[179] N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, Photonic wire bonding: A novel concept for chipscale interconnects,, Optics express, vol. 20, pp.17667-77, 07 (2012).

DOI: 10.1364/oe.20.017667

Google Scholar

[180] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, Hybrid integration of silicon photonics circuits and inp lasers by photonic wire bonding,, Optica, vol. 5, pp.876-883, Jul (2018).

DOI: 10.1364/optica.5.000876

Google Scholar

[181] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, A 71-gb/s nrz modulated 850-nm vcsel-based optical link,, IEEE Photonics Technology Letters, vol. 27, no. 6, pp.577-580, (2015).

DOI: 10.1109/lpt.2014.2385671

Google Scholar

[182] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, High-speed vcsels with strong confinement of optical fields and carriers,, Journal of Lightwave Technology, vol. 34, no. 2, pp.269-277, (2016).

DOI: 10.1109/jlt.2015.2458935

Google Scholar

[183] P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, High-speed and temperaturestable, oxide-confined 980-nm vcsels for optical interconnects,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp.1701207-1701207, (2013).

DOI: 10.1109/jstqe.2013.2246773

Google Scholar

[184] P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm vcsels," Journal of Lightwave Technology, vol. 33, no. 4, pp.825-831, 2015.[185] R. Rosales, M. Zorn, and J. A. Lott, "30-ghz bandwidth with directly current-modulated 980- nm oxide-aperture vcsels,, IEEE Photonics Technology Letters, vol. 29, no. 23, pp.2107-2110, (2017).

DOI: 10.1109/lpt.2017.2764626

Google Scholar

[186] N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, Simplicity VCSELs,, in Vertical-Cavity Surface-Emitting Lasers XXII (C. Lei and K. D. Choquette, eds.), vol. 10552, pp.119-127, International Society for Optics and Photonics, SPIE, (2018).

DOI: 10.1117/12.2295028

Google Scholar

[187] N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, High speed 1.1-μm-range ingaas-based vcsels,, IEICE Transactions, vol. 92-C, pp.942-950, 07 (2009).

DOI: 10.1587/transele.e92.c.942

Google Scholar

[188] R. Safaisini, E. Haglund, P. Westbergh, J. Gustavsson, and A. Larsson, 20 gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter vcsel,, Electronics Letters, vol. 50, pp.40-42, 01 (2014).

DOI: 10.1049/el.2013.2774

Google Scholar

[189] D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, Techno-economic comparison of silicon photonics and multimode vcsels,, J. Lightwave Technol., vol. 34, pp.233-242, Jan (2016).

DOI: 10.1109/jlt.2015.2483587

Google Scholar

[190] H. Liu, C. F. Lam, and C. Johnson, Scaling optical interconnects in datacenter networks opportunities and challenges for wdm,, in 2010 18th IEEE Symposium on High Performance Interconnects, pp.113-116, (2010).

DOI: 10.1109/hoti.2010.15

Google Scholar

[191] M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, Design and characteristics of highpower (>0.5-w cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular tem/sub 00/ beams,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 3, pp.561-573, (1999).

DOI: 10.1109/2944.788419

Google Scholar

[192] A. Shchegrov, A. Umbrasas, J. Watson, D. Lee, C. Amsden, W. Ha, G. Carey, V. Doan, B. Moran, A. Lewis, and A. Mooradian, 532-nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers,, Proc SPIE, vol. 5332, pp.151-156, 07 (2004).

DOI: 10.1117/12.529449

Google Scholar

[193] Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, Lasing characteristics of low-threshold oxide confinement ingaas-gaalas vertical-cavity surfaceemitting lasers,, IEEE Photonics Technology Letters, vol. 7, no. 11, pp.1234-1236, (1995).

DOI: 10.1109/68.473456

Google Scholar

[194] K. L. Lear, K. D. Choquette, R. P. Schneider, S. P. Kilcoyne, and K. M. Geib, Selectively oxidised vertical cavity surface emitting lasers with 50 % power conversion efficiency,, Electronics Letters, vol. 31, no. 3, pp.208-209, (1995).

DOI: 10.1049/el:19950125

Google Scholar

[195] R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, 57wavelength gaas vcsels,, Electronics Letters, vol. 33, no. 4, pp.330-331, (1997).

DOI: 10.1049/el:19970193

Google Scholar

[196] K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, Monolithic high-contrast metastructure for beam-shaping vcsels,, Optica, vol. 5, pp.10-13, Jan (2018).

DOI: 10.1364/optica.5.000010

Google Scholar

[197] H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, Orbital angular momentum vertical-cavity surface-emitting lasers," Optica, vol. 2, pp.547-552, Jun 2015.[198] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, "85-fj dissipated energy per bit at 30 gb/s across 500-m multimode fiber using 850-nm vcsels,, IEEE Photonics Technology Letters, vol. 25, no. 16, pp.1638-1641, (2013).

DOI: 10.1109/lpt.2013.2273222

Google Scholar

[199] N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, Anti–waveguiding vertical–cavity surface–emitting laser at 850 nm: From concept to advances in high–speed data transmission,, Opt. Express, vol. 26, pp.445-453, Jan (2018).

DOI: 10.1364/oe.26.000445

Google Scholar

[200] G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, 54 gbit/s ook transmission using single-mode vcsel up to 2.2 km mmf,, Electronics Letters, vol. 52, no. 8, pp.633-635, (2016).

DOI: 10.1049/el.2015.4264

Google Scholar

[201] A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,, Applied Physics Letters - APPL PHYS LETT, vol. 94, 05 (2009).

DOI: 10.1063/1.3136859

Google Scholar

[202] A. Liu, W. Chen, H. Qu, B. Jiang, W. Zhou, M. Xing, and W. Zheng, Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,, Laser Physics Letters, vol. 7, pp.213-217, mar (2010).

DOI: 10.1002/lapl.200910130

Google Scholar

[203] A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,, Journal of Physics D: Applied Physics, vol. 44, p.239501, may (2011).

DOI: 10.1088/0022-3727/44/23/239501

Google Scholar

[204] R. Puerta, M. Agustin, �Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, Effective 100 gb/s im/dd 850-nm multi- and single-mode vcsel transmission through om4 mmf,, Journal of Lightwave Technology, vol. 35, no. 3, pp.423-429, (2017).

DOI: 10.1109/jlt.2016.2625799

Google Scholar

[205] I. Lu, C. Wei, H. Chen, K. Chen, C. Huang, K. Chi, J. Shi, F. Lai, D. Hsieh, H. Kuo, W. Lin, S. Chiu, and J. Chen, Very high bit-rate distance product using high-power single-mode 850- nm vcsel with discrete multitone modulation formats through om4 multimode fiber,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp.444-452, (2015).

DOI: 10.1109/jstqe.2015.2421324

Google Scholar