[1]
L. Castro, M. Luisa Blázquez, F. González, J. A. Muñoz, A. Ballester, Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy. 179 (2018) 44-51.
DOI: 10.1016/j.hydromet.2018.05.029
Google Scholar
[2]
F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 92 (2011) 407-418.
Google Scholar
[3]
N. Srivastava, C. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater. 151 (2008) 1-8.
DOI: 10.1016/j.jhazmat.2007.09.101
Google Scholar
[4]
T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J. 118 (2006) 83-98.
DOI: 10.1016/j.cej.2006.01.015
Google Scholar
[5]
A. El Samrani, B. Lartiges, F. Villiéras, Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res. 42 (2008) 951-960.
DOI: 10.1016/j.watres.2007.09.009
Google Scholar
[6]
N.P. Hankins, N. Lu, N. Hilal, Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Sep Pur Tech. 51 (2006) 48-56.
DOI: 10.1016/j.seppur.2005.12.022
Google Scholar
[7]
H. Guo, S. Luo, L. Chen, X. Xiao, Q. Xi, W. Wei, G. Zeng, C. Liu, Y. Wan, J. Chen, Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Tech. 101 (2010) 8599-8605.
DOI: 10.1016/j.biortech.2010.06.085
Google Scholar
[8]
Y.S. Ng, D.J.C. Chan, Wastewater phytoremediation by Salvinia molesta. J Water Proc Eng. 15 (2017) 107-115.
DOI: 10.1016/j.jwpe.2016.08.006
Google Scholar
[9]
M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water–an electrochemical approach. Sensors Actuators B: Chem. 213 (2015) 515-533.
DOI: 10.1016/j.snb.2015.02.122
Google Scholar
[10]
M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of heavy metals from acid mine drainage. Water Res. 36 (2002) 4757-4764.
DOI: 10.1016/s0043-1354(02)00149-5
Google Scholar
[11]
J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Metal–organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A. 6 (2018) 4550-4555.
DOI: 10.1039/c7ta10428f
Google Scholar
[12]
Y. He, J. Liu, G. Han, T.-S. Chung, Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. J Membrane Sci. 555 (2018) 299-306.
DOI: 10.1016/j.memsci.2018.03.055
Google Scholar
[13]
W.-J. Lau, D. Emadzadeh, S. Shahrin, P.S. Goh, A.F. Ismail, Ultrafiltration Membranes Incorporated with Carbon-Based Nanomaterials for Antifouling Improvement and Heavy Metal Removal, in: A.F. Ismail P.S. Goh (Eds.), Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications, Elsevier, Amsterdam, 2018, pp.217-232.
DOI: 10.1016/b978-0-12-813574-7.00009-5
Google Scholar
[14]
A. Masarwa, D. Meyerstein, N. Daltrophe, O. Kedem, Compact accelerated precipitation softening (CAPS) as pretreatment for membrane desalination II. Lime softening with concomitant removal of silica and heavy metals. Desalination. 113 (1997) 73-84.
DOI: 10.1016/s0011-9164(97)00116-1
Google Scholar
[15]
H. Luo, G. Liu, R. Zhang, Y. Bai, S. Fu, Y. Hou, Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Materials. 270 (2014) 153-159.
DOI: 10.1016/j.jhazmat.2014.01.050
Google Scholar
[16]
M. Kul, K.O. Oskay, Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy. 155 (2015) 153-160.
DOI: 10.1016/j.hydromet.2015.04.021
Google Scholar
[17]
Z. Wang, Y. Feng, X. Hao, W. Huang, X. Feng, A novel potential-responsive ion exchange film system for heavy metal removal. J Mater Chem A. 2 (2014) 10263-10272.
DOI: 10.1039/c4ta00782d
Google Scholar
[18]
D. Roy, A. Gherrou, P. Pierre, D. Landry, V. Yargeau, Reverse osmosis applied to soil remediation wastewater: Comparison between bench-scale and pilot-scale results. J Water Proc Eng. 16 (2017) 115-122.
DOI: 10.1016/j.jwpe.2016.12.013
Google Scholar
[19]
Y. Cui, Q. Ge, X. Y. Liu, T. S. Chung, Novel forward osmosis process to effectively remove heavy metal ions. J Membrane Sci. 467 (2014) 188-194.
DOI: 10.1016/j.memsci.2014.05.034
Google Scholar
[20]
P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization. J Mater Chem A. 5 (2017) 14748-14757.
DOI: 10.1039/c7ta03515b
Google Scholar
[21]
M. Kavand, P. Eslami, L. Razeh, The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems. J Water Proc Eng. 34 (2020) 101151.
DOI: 10.1016/j.jwpe.2020.101151
Google Scholar
[22]
B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper. J Hazard Mater. 80 (2000) 33-42.
DOI: 10.1016/s0304-3894(00)00278-8
Google Scholar
[23]
S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev. 48 (2019) 463-487.
DOI: 10.1039/c8cs00493e
Google Scholar
[24]
M. Ahmad, S.S. Lee, A.U. Rajapaksha, M. Vithanage, M. Zhang, J.S. Cho, S.-E. Lee, Y.S. Ok, Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Tech. 143 (2013) 615-622.
DOI: 10.1016/j.biortech.2013.06.033
Google Scholar
[25]
T. Aman, A.A. Kazi, M.U. Sabri, Q. Bano, Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloid Surf B: Biointerfaces. 63 (2008) 116-121.
DOI: 10.1016/j.colsurfb.2007.11.013
Google Scholar
[26]
S. C. Pan, C. C. Lin, D.-H. Tseng, Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources, Conservation Recycling, 39 (2003) 79-90.
DOI: 10.1016/s0921-3449(02)00122-2
Google Scholar
[27]
M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy metals from paint industry's wastewater using Leca as an available adsorbent. International Journal of Environmental Science Technology. 6 (2009) 183-190.
DOI: 10.1007/bf03327620
Google Scholar
[28]
B. Amarasinghe, R.A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J. 132 (2007) 299-309.
DOI: 10.1016/j.cej.2007.01.016
Google Scholar
[29]
A. Gupta, C. Balomajumder, Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. J Water Proc Eng. 6 (2015) 1-10.
DOI: 10.1016/j.jwpe.2015.02.004
Google Scholar
[30]
M. Mondal, Removal of Pb (II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column. J Env Manage. 90 (2009) 3266-3271.
DOI: 10.1016/j.jenvman.2009.05.025
Google Scholar
[31]
G. Annadurai, R. Juang, D. Lee, Adsorption of heavy metals from water using banana and orange peels. Water Sci Tech. 47 (2003) 185-190.
DOI: 10.2166/wst.2003.0049
Google Scholar
[32]
K.K. Krishnani, X. Meng, C. Christodoulatos, V.M. Boddu, Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater. 153 (2008) 1222-1234.
DOI: 10.1016/j.jhazmat.2007.09.113
Google Scholar
[33]
N. Singh, C. Balomajumder, Simultaneous removal of phenol and cyanide from aqueous solution by adsorption onto surface modified activated carbon prepared from coconut shell. J Water Proc Eng. 9 (2016) 233-245.
DOI: 10.1016/j.jwpe.2016.01.008
Google Scholar
[34]
M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Indust Eng Chem. 20 (2014) 745-751.
DOI: 10.1016/j.jiec.2013.06.030
Google Scholar
[35]
N. Kataria, V. Garg, Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: regeneration and mechanism. Chemosphere. 208 (2018) 818-828.
DOI: 10.1016/j.chemosphere.2018.06.022
Google Scholar
[36]
M.R. Jamei, M.R. Khosravi, B. Anvaripour, A novel ultrasound assisted method in synthesis of NZVI particles. Ultrasonic sonochemistry. 21 (2014) 226-233.
DOI: 10.1016/j.ultsonch.2013.04.015
Google Scholar
[37]
A.M. Khalil, O. Eljamal, T.W. Amen, Y. Sugihara, N. Matsunaga, Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem Eng J. 309 (2017) 349-365.
DOI: 10.1016/j.cej.2016.10.080
Google Scholar
[38]
Y. Zou, Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Env Sci Tech. 50 (2016) 7290-7304.
DOI: 10.1021/acs.est.6b01897
Google Scholar
[39]
Z. Wen, Y. Zhang, C. Dai, Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloid Surf A: Physicochem Eng Aspects. 457 (2014) 433-440.
DOI: 10.1016/j.colsurfa.2014.06.017
Google Scholar
[40]
S.R. Kanel, , et al., Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Env Sci Tech. 39 (2005) 1291-1298.
DOI: 10.1021/es048991u
Google Scholar
[41]
R. Wang, B. Manning, L. Charlet, H. Choi, Removal of chromium(VI) from wastewater by Mg-aminoclay coated nanoscale zero-valent iron. J Water Proc Eng. 18 (2017) 134-143.
DOI: 10.1016/j.jwpe.2017.05.013
Google Scholar
[42]
X. Li, M. Zhang, Y. Liu, X. Li, Y. Liu, R. Hua, C. He, Removal of U (VI) in aqueous solution by nanoscale zero-valent iron (nZVI). Water Quality, Exposure Health. 5 (2013). 31-40.
DOI: 10.1007/s12403-013-0084-4
Google Scholar
[43]
H.K. Boparai, M. Joseph, D.M. O'Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 186 (2011) 458-465.
DOI: 10.1016/j.jhazmat.2010.11.029
Google Scholar
[44]
R. Fu, Y. Yang, Z. Xu, X. Zhang, X. Guo, D. Bi, The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere. 138 (2015) 726-734.
DOI: 10.1016/j.chemosphere.2015.07.051
Google Scholar
[45]
W. Wang, Y. Hua, S. Li, W. Yan, W. X. Zhang, Removal of Pb (II) and Zn (II) using lime and nanoscale zero-valent iron (nZVI): a comparative study. Chem Eng J. 304 (2016) 79-88.
DOI: 10.1016/j.cej.2016.06.069
Google Scholar
[46]
N. Efecan, T. Shahwan, A.E. Eroğlu, I. Lieberwirth, Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination. 249 (2009) 1048-1054.
DOI: 10.1016/j.desal.2009.06.054
Google Scholar
[47]
Z. Fang, J. Chen, X. Qiu, X. Qiu, W. Cheng, L. Zhu, Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination. 268 (2011) 60-67.
DOI: 10.1016/j.desal.2010.09.051
Google Scholar
[48]
S. Mortazavian, H. An, D. Chun, J. Moon, Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies. Chem Eng J. 353 (2018) 781-795.
DOI: 10.1016/j.cej.2018.07.170
Google Scholar
[49]
J. Zhang, M. Qiu, Adsorption Kinetics and Isotherms of Copper Ion in Aqueous Solution by Bentonite Supported Nanoscale Zero Valent Iron. Nature Environment, Poll Tech. 18 (2019) 269-274.
Google Scholar
[50]
B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam, S. Jorfi, Heterogeneous catalytic degradation of organic compounds using nanoscale zero-valent iron supported on kaolinite: Mechanism, kinetic and feasibility studies. J Taiwan Institute Chem Eng. 96 (2019) 329-340.
DOI: 10.1016/j.jtice.2018.11.027
Google Scholar
[51]
S. Wang, M. Zhao, M. Zhou, Y.C. Li, J. Wang, B. Gao, S. Sato, K. Feng, W. Yin, A.D. Igalavithana, Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. J Hazard Mater. 373 (2019) 820-834.
DOI: 10.1016/j.jhazmat.2019.03.080
Google Scholar
[52]
W. Jiao, Z. Feng, Y. Liu, H. Jiang, Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron. J Nanopart Res. 18 (2016) 1-9.
DOI: 10.1007/s11051-016-3512-0
Google Scholar
[53]
W. Wang, J. Wang, Y. Guo, C. Zhu, F. Pan, R. Wu, C. Wang, Removal of multiple nitrosamines from aqueous solution by nanoscale zero-valent iron supported on granular activated carbon: Influencing factors and reaction mechanism. Sci Total Env. 639 (2018) 934-943.
DOI: 10.1016/j.scitotenv.2018.05.214
Google Scholar
[54]
S. Bleyl, F. D. Kopinke, K. Mackenzie, Carbo-Iron®—Synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chem Eng J. 191 (2012) 588-595.
DOI: 10.1016/j.cej.2012.03.021
Google Scholar
[55]
C.-H. Xu, L.-j. Zhu, X.-H. Wang, S. Lin, Y.-m. Chen, Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC). Water, Air, Soil Poll. 225 (2014) 1845-1858.
DOI: 10.1007/s11270-013-1845-1
Google Scholar
[56]
F. Zhu, S. Ma, T. Liu, X. Deng, Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J Clean Prod. 174 (2018) 184-190.
DOI: 10.1016/j.jclepro.2017.10.302
Google Scholar
[57]
S. Machado, J. Pacheco, H. Nouws, J.T. Albergaria, C. Delerue-Matos, Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Env. 533 (2015) 76-81.
DOI: 10.1016/j.scitotenv.2015.06.091
Google Scholar
[58]
A. Rana, N. Kumari, M. Tyagi, S. Jagadevan, Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics. Chem Eng J. 347 (2018) 91-100.
DOI: 10.1016/j.cej.2018.04.075
Google Scholar
[59]
M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Adv Powder Tech. 28 (2017) 122-130.
DOI: 10.1016/j.apt.2016.09.003
Google Scholar
[60]
T. Wang, J. Lin, Z, Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod. 83 (2014) 413-419.
DOI: 10.1016/j.jclepro.2014.07.006
Google Scholar
[61]
T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci total Env. 466 (2014) 210-213.
DOI: 10.1016/j.scitotenv.2013.07.022
Google Scholar
[62]
Y. Rashtbari, S. Hazrati, A. Azari, Sh. Afshin, M. Fazlzadeh, M. Vosoughi, A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv Powder Tech. 31 (2020) 1612-1623.
DOI: 10.1016/j.apt.2020.02.001
Google Scholar
[63]
A.C. de Lima Barizão, M. F. Silva, M. Andrade, F. C. Brito, R. G. Gomes, R. Bergamasco Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal. J Env Chem Eng. 8 (2020) 103618.
DOI: 10.1016/j.jece.2019.103618
Google Scholar
[64]
G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem. 22 (2007) 249-275.
DOI: 10.1016/j.apgeochem.2006.09.010
Google Scholar
[65]
H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, Zhu, Z. Chen, B. Hu, J. Chen, X. Wang, Adsorptive and reductive removal of U (VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chem Eng J. 366 (2019) 368-377.
DOI: 10.1016/j.cej.2019.02.098
Google Scholar
[66]
L. Molina, J. Gaete, I. Alfaro, V. Ide, F. Valenzuela, J. Parada, C. Basualto, Synthesis and characterization of magnetite nanoparticles functionalized with organophosphorus compounds and its application as an adsorbent for La (III), Nd (III) and Pr (III) ions from aqueous solutions. J Mol Liq. 275 (2019) 178-191.
DOI: 10.1016/j.molliq.2018.11.074
Google Scholar
[67]
L. Qian, W. Zhang, J. Yan, L. Han, Y. Chen, D. Ouyang, M. Chen, Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr (VI) removal. Env Poll. 223 (2017) 153-160.
DOI: 10.1016/j.envpol.2016.12.077
Google Scholar
[68]
J. Xiao, J. Xiao, Q. Yue, B. Gao, Y. Sun, J. Kong, Y. Gao, Q. Li, Y. Wang, Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chem Eng Journal. 253 (2014) 63-72.
DOI: 10.1016/j.cej.2014.05.030
Google Scholar
[69]
P.-A. Chen, H.-C. Cheng, H.P. Wang, Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water. J Clean Prod. 174 (2018) 927-932.
DOI: 10.1016/j.jclepro.2017.11.034
Google Scholar
[70]
L. B. Ling, Pan, W.-x. Zhang, Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV). Water Res. 71 (2015) 274-281.
DOI: 10.1016/j.watres.2015.01.002
Google Scholar
[71]
M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Adv Powder Tech. 28 (2017) 122-130.
DOI: 10.1016/j.apt.2016.09.003
Google Scholar
[72]
C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Colloid Interf Sci. 47 (1974) 755-765.
DOI: 10.1016/0021-9797(74)90252-5
Google Scholar
[73]
G. Vilardi, T. Mpouras, D. Dermatas, N. Verdone, A. Polydera, L. Di Palma, Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere. 201 (2018) 716-729.
DOI: 10.1016/j.chemosphere.2018.03.032
Google Scholar
[74]
M. Stan, I. Lung, M.-L. Soran, C. Leostean, A. Popa, M. Stefan, M.D. Lazar, O. Opris, T.-D. Silipas, A.S. Porav, Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Proc Safe Env Protect. 107 (2017) 357-372.
DOI: 10.1016/j.psep.2017.03.003
Google Scholar
[75]
C. Cai, M. Zhao, Z. Yu, H. Rong, C. Zhang, Utilization of nanomaterials for in-situ remediation of heavy metal (loid) contaminated sediments: A review. Sci Total Env. 662 (2019) 205-217.
DOI: 10.1016/j.scitotenv.2019.01.180
Google Scholar
[76]
Z. Fang, X. Qiu, R. Huang, X. Qiu, M. Li, Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization. Desalination. 280 (2011) 224-231.
DOI: 10.1016/j.desal.2011.07.011
Google Scholar
[77]
B. Kakavandi, , R.R. Kalantary, M. Farzadkia, A.H. Mahvi, A. Esrafili, A. Azari, A.R. Yari, A.B. Javid, Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. J Env health sci Eng. 12 (2014) 115-125.
DOI: 10.1186/s40201-014-0115-5
Google Scholar
[78]
F. Cao, C. Lian, J. Yu, H. Yang, S. Lin, Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresource Tech. 276 (2019) 211-218.
DOI: 10.1016/j.biortech.2019.01.007
Google Scholar
[79]
M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater. 185 (2011) 140-147.
DOI: 10.1016/j.jhazmat.2010.09.008
Google Scholar
[80]
X.-q Li, W.-x. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C. 111 (2007) 6939-6946.
DOI: 10.1021/jp0702189
Google Scholar
[81]
Ç. Üzüm, T. Shahwan, A.E. Eroğlu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci. 43 (2009) 172-181.
DOI: 10.1016/j.clay.2008.07.030
Google Scholar
[82]
D. Karabelli, C. Üzüm, T. Shahwan, A.E. Eroglu, T.B. Scott, K.R. Hallam, I. Lieberwirth, Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Indust Eng Chem Res. 47 (2008) 4758-4764.
DOI: 10.1021/ie800081s
Google Scholar
[83]
Z.-F. Yang, L.-Y. Li, C.-T. Hsieh, R.-S. Juang, Y.A. Gandomi, Fabrication of magnetic iron Oxide- Graphene composites for adsorption of copper ions from aqueous solutions. Mater Chem Phys. 219 (2018) 30-39.
DOI: 10.1016/j.matchemphys.2018.07.053
Google Scholar
[84]
D. Prabu, R. Parthiban, P. Senthil Kumar, N. Kumari, P. Saikia, Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desal and Water Treat. 57 (2016) 6487-6502.
DOI: 10.1080/19443994.2015.1007488
Google Scholar
[85]
M.T. Sikder, Y. Mihara, M.S. Islam, T. Saito, S. Tanaka, M. Kurasaki, Preparation and characterization of chitosan–caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem Engineering J. 236 (2014) 378-387.
DOI: 10.1016/j.cej.2013.09.093
Google Scholar