Nanoencapsulation of Permethrin in Polylactic Acid to Enhance Insecticide Persistence for Scolytinae Pest Control

Article Preview

Abstract:

Nanotechnology can be used to protect plants against Fusarium Dieback and the Laurel Wilt, that are new and lethal insect-vectored diseases that can host over 300 tree species, including avocado trees. The vectors of these diseases are beetles members of the Scolytinae subfamily, notoriously difficult to control because they spend most of their lives hidden within galleries. Nevertheless, when tested on avocado bolts, some insecticides (including permethrin) provided a reduction in the number of entrance holes or beetle emergence, but the persistence of pesticide residues might have been influenced by factors like rainfall and sunlight. The present study aims to encapsulate permethrin in polylactic acid nanospheres, conferring protection against losses by physic and chemical factors, ultimately increasing its persistence. The particle size, zeta potential, and encapsulation efficiency obtained were 393nm, -32mV, and 27%, respectively. After 96 h of exposure to UV-A light, the insecticidal activity of unencapsulated permethrin was severely diminished, having a reduction in mortality in scolytinae beetles from 80% to 40%, while the nanoencapsulated permethrin retained a 70%. The study has concluded the potential advantage of formulating permethrin into nanometric biodegradable spheres, enhancing the persistence of the insecticide while removing the use of toxic organic solvents as vehicle for the active ingredient, reducing the environmental impact.)

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-152

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Boland, D. L. Woodward, Impacts of the invasive shot hole borer (Euwallacea kuroshio) are linked to sewage pollution in southern California: the enriched tree hypothesis. PeerJ https://doi.org/10.7717/peerj.6812 (2019).

DOI: 10.7717/peerj.6812

Google Scholar

[2] C. Umeda, A. Eskalen, T. D. Paine, Polyphagous shot hole borer and Fusarium dieback in California: insects and diseases of mediterranean forest systems, T. Paine and F. Lieutier (Eds.), Springer, Cham, 2016, pp.757-767.

DOI: 10.1007/978-3-319-24744-1_26

Google Scholar

[3] L. R. Batra, Ambrosia beetles and their associated fungi: research trends and techniques. Proc. Indian Acad. Sci. (Plant. Sci.), 94 (1985) 137–148.

DOI: 10.1007/bf03053133

Google Scholar

[4] R. A. Haack, Intercepted scolytidae (coleoptera) at US ports of entry: 1985-2000. Integrated Pest Manag. Rev. 6 (2001) 253-282.

Google Scholar

[5] R. A. Haack, Exotic bark- and wood-boring coleoptera in the United States: recent establishments and interceptions. Can. J. Forest Res. 36 (2006) 269-288.

DOI: 10.1139/x05-249

Google Scholar

[6] R. J. Rabaglia, S. A. Dole, A. I. Cognato, Review Of american xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an illustrated key. Ann. Entomol. Soc. of Amer. 99 (2006) 1034-1056.

DOI: 10.1603/0013-8746(2006)99[1034:roaxcc]2.0.co;2

Google Scholar

[7] T. C. Harrington, S. W. Fraedrich, D. N. Aghayeva, Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the lauraceae. Mycotaxon, 104, (2008) 399-404.

Google Scholar

[8] A. E. Mayfield, J. E. Peña, J. H. Crane, J. A. Smith, C. L. Branch, E. Ottoson, M. Hughes, Ability of the red bay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) to bore into young avocado (lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp.). Florida Entomol. 91 (2008) 485-487.

DOI: 10.1653/0015-4040(2008)91[485:aotrab]2.0.co;2

Google Scholar

[9] S. W. Fraedrich, T. Harrington, R. J. Rabaglia, M. D. Ulyshen, A. E. Mayfield, J. L. Hanula J. M. Eicwort, D. R. Miller, A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other lauraceae in the southeastern United States. Plant. Dis. 92 (2008) 215-224.

DOI: 10.1094/pdis-92-2-0215

Google Scholar

[10] J. L. Hanula, A. E. Mayfield, S. W. Fraedrich, R. J. Rabaglia, Biology and host associations of the red ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay (Persea borbonia) trees in the southeastern United States. J. Econ. Entomol. 101 (2008)1276-1286.

DOI: 10.1093/jee/101.4.1276

Google Scholar

[11] D. Carrillo, R. E. Duncan, J. N. Ploetz, A. F. Campbell, R. C. Ploetz, J. E. Peña, Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology. 63 (2014) 54–62.

DOI: 10.1111/ppa.12073

Google Scholar

[12] R. C. Ploetz, J. L. Konkol, T. Narvaez, R. E. Duncan, R. J. Saucedo, A. Campbell, J. Mantilla, D. Carrillo, P. E. Kendra, Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. J. Econ. Entomol., 110 (2017) 347–354.

DOI: 10.1093/jee/tow292

Google Scholar

[13] J. E. Peña, J. H. Crane, J. L. Capinera, R. E. Duncan, P. E. Kendra, R. C. Ploetz, S. McLean, G. Brar, M. C. Thomas, R. D. Cave, Chemical control of the redbay ambrosia beetle, Xyleborus glabratus, and other scolytinae (Coleoptera: Curculionidae). Florida Entomologist. 94 (2011) 882-896.

DOI: 10.1653/024.094.0424

Google Scholar

[14] R. H. Ian, Aquatic organisms and pyrethroids. Pestic. Sci. 27 (1989) 429–457.

Google Scholar

[15] P. E. Ingham, S. J. McNeil, M. R. Sunderland, Functional finishes for wool – eco considerations. Adv. Mat. Res.,441 (2012) 33–43.

DOI: 10.4028/www.scientific.net/amr.441.33

Google Scholar

[16] M. Nuruzzaman, M. M. Mahmudur, Y. Liu, R. Naidu, Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Agric. Food Chem. 64 (2016) 1447−1483.

DOI: 10.1021/acs.jafc.5b05214

Google Scholar

[17] R. Nair, S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, D. S. Kumar, Nanoparticulate material delivery to plants. Plant Sci.,179 (2010) 154−163.

DOI: 10.1016/j.plantsci.2010.04.012

Google Scholar

[18] S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review. Prog. Polym. Sci. 38 (2013) 1232−1261.

DOI: 10.1016/j.progpolymsci.2013.02.003

Google Scholar

[19] M. Ghamari, M. Khoobdel, M. Iman, Increase the residual efficacy of permethrin-impregnated cloths against mosquitoes by the use of controlled-release formulations Int. J. Mosq. Res. 6 (2019) 51-57.

Google Scholar

[20] G. C. Türkoğlu, A. M. Sarıışık, G. Erkan, Micro- and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles. Iran Polym J. 29 (2020) 321–329.

DOI: 10.1007/s13726-020-00799-4

Google Scholar

[21] J. Zhang, M. Li, T. Fan, Q. Xu, Y. Wu, C. Chen, Q. Huang, Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J. Polym. Res. 20 (2013) 1−11.

DOI: 10.1007/s10965-013-0107-7

Google Scholar

[22] J. Lee, J. Moon, J. Jeong, M. Kim, B. Kim, M. Choi, J. Kim, C. Ha, Biodegradability of poly (lactic acid) (PLA)/lactic acid (LA) blends using anaerobic digester sludge. Macromol. Res. 24 (2016) 741-747.

DOI: 10.1007/s13233-016-4100-y

Google Scholar

[23] C. Chuensangjuna, C. Pechyenb, S. Sirisansaneeyakula, Degradation behaviors of different blends of polylactic acid buried in soil. Energy Procedia. 3 (2013) 73–82.

DOI: 10.1016/j.egypro.2013.06.735

Google Scholar

[24] Y. Wu, Y. Zheng, W. Yang, C. Wang, J. Hu, S. Fu, Synthesis and characterization of a novel amphiphilic chitosan−polylactide graft copolymer. Carbohydr. Polym. 59 (2005) 165−171.

DOI: 10.1016/j.carbpol.2004.09.006

Google Scholar

[25] M. Li, Q. Huang, Y. Wu, A novel chitosan-poly(lactide)copolymer and its submicron particles as imidacloprid carriers. Pest Manage. Sci. 67 (2011) 831−836.

DOI: 10.1002/ps.2120

Google Scholar

[26] N. Hwisa, P. Katakam, B. Rao, S. Kumari, Solvent evaporation techniques as promising advancement in microencapsulation. VRI Biol. Med. Chem. 1 (2013) 8-22.

DOI: 10.14259/bmc.v1i1.29

Google Scholar

[27] O. Menocal, L. Cruz, P. E. Kendra, J. Crane, R. C. Ploetz, D. Carrillo, Rearing Xyleborus volvulus (coleoptera: curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environ.L Entomol., 46 (2017) 1275–1283.

DOI: 10.1093/ee/nvx151

Google Scholar

[28] G.A. Tolstikov, L.M. Khalilov, F.Z. Galin, E.V. Vasil'eva, D.B. Amirkhanov, M.G. Migranov, A.A. Panasenko, 1H And 13C NMR Spectra of biologically active compounds. iv. diastereomers of pyrethroids and their insecticidal activity. Chem. Nat. Compd. 24 (1988) 246-250.

DOI: 10.1007/bf00596760

Google Scholar