[1]
J. M. Boland, D. L. Woodward, Impacts of the invasive shot hole borer (Euwallacea kuroshio) are linked to sewage pollution in southern California: the enriched tree hypothesis. PeerJ https://doi.org/10.7717/peerj.6812 (2019).
DOI: 10.7717/peerj.6812
Google Scholar
[2]
C. Umeda, A. Eskalen, T. D. Paine, Polyphagous shot hole borer and Fusarium dieback in California: insects and diseases of mediterranean forest systems, T. Paine and F. Lieutier (Eds.), Springer, Cham, 2016, pp.757-767.
DOI: 10.1007/978-3-319-24744-1_26
Google Scholar
[3]
L. R. Batra, Ambrosia beetles and their associated fungi: research trends and techniques. Proc. Indian Acad. Sci. (Plant. Sci.), 94 (1985) 137–148.
DOI: 10.1007/bf03053133
Google Scholar
[4]
R. A. Haack, Intercepted scolytidae (coleoptera) at US ports of entry: 1985-2000. Integrated Pest Manag. Rev. 6 (2001) 253-282.
Google Scholar
[5]
R. A. Haack, Exotic bark- and wood-boring coleoptera in the United States: recent establishments and interceptions. Can. J. Forest Res. 36 (2006) 269-288.
DOI: 10.1139/x05-249
Google Scholar
[6]
R. J. Rabaglia, S. A. Dole, A. I. Cognato, Review Of american xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an illustrated key. Ann. Entomol. Soc. of Amer. 99 (2006) 1034-1056.
DOI: 10.1603/0013-8746(2006)99[1034:roaxcc]2.0.co;2
Google Scholar
[7]
T. C. Harrington, S. W. Fraedrich, D. N. Aghayeva, Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the lauraceae. Mycotaxon, 104, (2008) 399-404.
Google Scholar
[8]
A. E. Mayfield, J. E. Peña, J. H. Crane, J. A. Smith, C. L. Branch, E. Ottoson, M. Hughes, Ability of the red bay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) to bore into young avocado (lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp.). Florida Entomol. 91 (2008) 485-487.
DOI: 10.1653/0015-4040(2008)91[485:aotrab]2.0.co;2
Google Scholar
[9]
S. W. Fraedrich, T. Harrington, R. J. Rabaglia, M. D. Ulyshen, A. E. Mayfield, J. L. Hanula J. M. Eicwort, D. R. Miller, A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other lauraceae in the southeastern United States. Plant. Dis. 92 (2008) 215-224.
DOI: 10.1094/pdis-92-2-0215
Google Scholar
[10]
J. L. Hanula, A. E. Mayfield, S. W. Fraedrich, R. J. Rabaglia, Biology and host associations of the red ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay (Persea borbonia) trees in the southeastern United States. J. Econ. Entomol. 101 (2008)1276-1286.
DOI: 10.1093/jee/101.4.1276
Google Scholar
[11]
D. Carrillo, R. E. Duncan, J. N. Ploetz, A. F. Campbell, R. C. Ploetz, J. E. Peña, Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology. 63 (2014) 54–62.
DOI: 10.1111/ppa.12073
Google Scholar
[12]
R. C. Ploetz, J. L. Konkol, T. Narvaez, R. E. Duncan, R. J. Saucedo, A. Campbell, J. Mantilla, D. Carrillo, P. E. Kendra, Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. J. Econ. Entomol., 110 (2017) 347–354.
DOI: 10.1093/jee/tow292
Google Scholar
[13]
J. E. Peña, J. H. Crane, J. L. Capinera, R. E. Duncan, P. E. Kendra, R. C. Ploetz, S. McLean, G. Brar, M. C. Thomas, R. D. Cave, Chemical control of the redbay ambrosia beetle, Xyleborus glabratus, and other scolytinae (Coleoptera: Curculionidae). Florida Entomologist. 94 (2011) 882-896.
DOI: 10.1653/024.094.0424
Google Scholar
[14]
R. H. Ian, Aquatic organisms and pyrethroids. Pestic. Sci. 27 (1989) 429–457.
Google Scholar
[15]
P. E. Ingham, S. J. McNeil, M. R. Sunderland, Functional finishes for wool – eco considerations. Adv. Mat. Res.,441 (2012) 33–43.
DOI: 10.4028/www.scientific.net/amr.441.33
Google Scholar
[16]
M. Nuruzzaman, M. M. Mahmudur, Y. Liu, R. Naidu, Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Agric. Food Chem. 64 (2016) 1447−1483.
DOI: 10.1021/acs.jafc.5b05214
Google Scholar
[17]
R. Nair, S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, D. S. Kumar, Nanoparticulate material delivery to plants. Plant Sci.,179 (2010) 154−163.
DOI: 10.1016/j.plantsci.2010.04.012
Google Scholar
[18]
S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review. Prog. Polym. Sci. 38 (2013) 1232−1261.
DOI: 10.1016/j.progpolymsci.2013.02.003
Google Scholar
[19]
M. Ghamari, M. Khoobdel, M. Iman, Increase the residual efficacy of permethrin-impregnated cloths against mosquitoes by the use of controlled-release formulations Int. J. Mosq. Res. 6 (2019) 51-57.
Google Scholar
[20]
G. C. Türkoğlu, A. M. Sarıışık, G. Erkan, Micro- and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles. Iran Polym J. 29 (2020) 321–329.
DOI: 10.1007/s13726-020-00799-4
Google Scholar
[21]
J. Zhang, M. Li, T. Fan, Q. Xu, Y. Wu, C. Chen, Q. Huang, Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J. Polym. Res. 20 (2013) 1−11.
DOI: 10.1007/s10965-013-0107-7
Google Scholar
[22]
J. Lee, J. Moon, J. Jeong, M. Kim, B. Kim, M. Choi, J. Kim, C. Ha, Biodegradability of poly (lactic acid) (PLA)/lactic acid (LA) blends using anaerobic digester sludge. Macromol. Res. 24 (2016) 741-747.
DOI: 10.1007/s13233-016-4100-y
Google Scholar
[23]
C. Chuensangjuna, C. Pechyenb, S. Sirisansaneeyakula, Degradation behaviors of different blends of polylactic acid buried in soil. Energy Procedia. 3 (2013) 73–82.
DOI: 10.1016/j.egypro.2013.06.735
Google Scholar
[24]
Y. Wu, Y. Zheng, W. Yang, C. Wang, J. Hu, S. Fu, Synthesis and characterization of a novel amphiphilic chitosan−polylactide graft copolymer. Carbohydr. Polym. 59 (2005) 165−171.
DOI: 10.1016/j.carbpol.2004.09.006
Google Scholar
[25]
M. Li, Q. Huang, Y. Wu, A novel chitosan-poly(lactide)copolymer and its submicron particles as imidacloprid carriers. Pest Manage. Sci. 67 (2011) 831−836.
DOI: 10.1002/ps.2120
Google Scholar
[26]
N. Hwisa, P. Katakam, B. Rao, S. Kumari, Solvent evaporation techniques as promising advancement in microencapsulation. VRI Biol. Med. Chem. 1 (2013) 8-22.
DOI: 10.14259/bmc.v1i1.29
Google Scholar
[27]
O. Menocal, L. Cruz, P. E. Kendra, J. Crane, R. C. Ploetz, D. Carrillo, Rearing Xyleborus volvulus (coleoptera: curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environ.L Entomol., 46 (2017) 1275–1283.
DOI: 10.1093/ee/nvx151
Google Scholar
[28]
G.A. Tolstikov, L.M. Khalilov, F.Z. Galin, E.V. Vasil'eva, D.B. Amirkhanov, M.G. Migranov, A.A. Panasenko, 1H And 13C NMR Spectra of biologically active compounds. iv. diastereomers of pyrethroids and their insecticidal activity. Chem. Nat. Compd. 24 (1988) 246-250.
DOI: 10.1007/bf00596760
Google Scholar