Controlled Synthesis of Oriented Zinc Oxide Nanowires Arrays by Electrochemical Deposition on Sputtered Layer

Article Preview

Abstract:

In this study, dense zinc oxide nanowires were electrochemically synthesized on sputtered zinc oxide buffer layers substrates using a solution of zinc chloride as a precursor. The control of nanowires density was studied. X-Ray Diffraction patterns revealed the formation of pure wurtzite zinc oxide structure. The mechanism of the formation of zinc oxide nanorods from the nucleation to the growth stage is proposed based on the study of the deposition parameters. Optical analysis reveals that these films can be involved in solar cells as window layers. Moreover, controlling structural properties of the buffer is an excellent way to control the formation of nanorods during the nucleation step. In fact, Scanning Electronic Microscopy images and reflectometry analysis showed that the buffer layer consists of dense nanoparticles, with a density that increases by increasing the radiofrequency frequency power, This can be explained by the densification of the nanorods deposited thereon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-24

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Nkhaili, A. El Kissani, A. Elmansouri, M. Elyaagoubi, A. Outzourhit, and M. Ait Ali, Fabrication and characterization of inverted hybrid solar cells based on conducting polymers and nanostructured Zinc oxide,, 2014 Int. Conf. Electr. Sci. Technol. Maghreb, Cist. 2014, p.0–4, 2014,.

DOI: 10.1109/cistem.2014.7077047

Google Scholar

[2] S. Sanchez, C. Lévy-Clément, and V. Ivanova, Electrochemical Deposition of ZnO Thin Films and Nanowires for Photovoltaic Applications,, J. Electrochem. Soc., vol. 159, no. 12, pp. D705–D712, 2012,.

DOI: 10.1149/2.024212jes

Google Scholar

[3] I. Mora-Seró et al., Determination of carrier density of ZnO nanowires by electrochemical techniques,, Appl. Phys. Lett., vol. 89, no. 20, p.1–4, 2006,.

DOI: 10.1063/1.2390667

Google Scholar

[4] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method,, Chem. Mater., vol. 15, no. 17, p.3294–3299, 2003,.

DOI: 10.1021/cm020465j

Google Scholar

[5] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,, Appl. Phys. Lett., vol. 80, no. 22, p.4232–4234, 2002,.

DOI: 10.1063/1.1482800

Google Scholar

[6] P. Yang et al., Controlled growth of ZnO nanowires and their optical properties,, Adv. Funct. Mater., vol. 12, no. 5, p.323–331, 2002,.

Google Scholar

[7] T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,, Phys. Rev. Lett., vol. 93, no. 10, p.1–4, 2004,.

DOI: 10.1103/physrevlett.93.103903

Google Scholar

[8] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,, Adv. Mater., vol. 15, no. 5, p.464–466, 2003,.

DOI: 10.1002/adma.200390108

Google Scholar

[9] D. S. Souza, D. Rodríguez, and M. A. F. Medeiros, A study of the sources of slat noise using proper orthogonal decomposition,, 19th AIAA/CEAS Aeroacoustics Conf., vol. 05, no. 2, p.158, 2013,.

DOI: 10.2514/6.2013-2163

Google Scholar

[10] L. Nkhaili et al., Effect of RF power on the structural and optical properties of RF-sputtered ZnO thin films,, EPJ Appl. Phys., vol. 66, no. 3, 2014,.

DOI: 10.1051/epjap/2014140098

Google Scholar

[11] R. Tena-Zaera, J. Elias, C. Lévy-Clément, I. Mora-Seró, Y. Luo, and J. Bisquert, Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays,, Phys. Status Solidi Appl. Mater. Sci., vol. 205, no. 10, p.2345–2350, 2008,.

DOI: 10.1002/pssa.200779426

Google Scholar

[12] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, and L. Luo, Zinc oxide nanorod and nanowire for humidity sensor,, Appl. Surf. Sci., vol. 242, no. 1–2, p.212–217, 2005,.

DOI: 10.1016/j.apsusc.2004.08.013

Google Scholar

[13] C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,, Adv. Mater., vol. 17, no. 12, p.1512–1515, 2005,.

DOI: 10.1002/adma.200401848

Google Scholar

[14] C. J. Chang et al., A large area bimaterial sheet of piezoelectric nanogenerators for energy harvesting: Effect of RF sputtering on ZnO nanorod,, Microelectron. Eng., vol. 88, no. 8, p.2236–2241, 2011,.

DOI: 10.1016/j.mee.2010.12.010

Google Scholar

[15] A. Henni, A. Merrouche, L. Telli, A. Karar, F. I. Ezema, and H. Haffar, Optical, structural, and photoelectrochemical properties of nanostructured ln-doped ZnO via electrodepositing method,, J. Solid State Electrochem., vol. 20, no. 8, p.2135–2142, 2016,.

DOI: 10.1007/s10008-016-3190-y

Google Scholar

[16] B. Scharifker, Theoretical and experimental studies of multiple nucleation,, Electrochim. Acta, vol. 28, no. 2, p.879–889, (1982).

Google Scholar

[17] B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,, Phys. Status Solidi Basic Res., vol. 252, no. 8, p.1700–1710, 2015,.

DOI: 10.1002/pssb.201552007

Google Scholar