[1]
K. Mitra, A.B. Ghosh, A. Sarkar, N. Saha, A.K. Dutta, Colorimetric estimation of human glucose level using gamma-Fe2O3 nanoparticles: An easily recoverable effective mimic peroxidase, Biochem. Bioph. Res. Co. 451 (2014) 30-35.
DOI: 10.1016/j.bbrc.2014.07.028
Google Scholar
[2]
J.W. Liu, Y. Luo, Y.M. Wang, L.Y. Duan, J.H. Jiang, R.Q. Yu, Graphitic Carbon Nitride Nanosheets-Based Ratiometric Fluorescent Probe for Highly Sensitive Detection of H2O2 and Glucose, ACS Appl. Mater. Interfaces 8 (2016) 33439-33445.
DOI: 10.1021/acsami.6b11207
Google Scholar
[3]
M. Li, H. Wang, X. Wang, Q. Lu, H. Li, Y. Zhang, S. Yao, Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose, Biosens. Bioelectron. 142 (2019) 111535.
DOI: 10.1016/j.bios.2019.111535
Google Scholar
[4]
W. Zheng, J. Liu, D. Yi, Y. Pan, Y. Long, H. Zheng, Ficin encapsulated in mesoporous metal-organic frameworks with enhanced peroxidase-like activity and colorimetric detection of glucose, Spectrochim. Acta A 233 (2020) 118195.
DOI: 10.1016/j.saa.2020.118195
Google Scholar
[5]
C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review, RSC Adv. 3 (2013) 4473.
DOI: 10.1039/c2ra22351a
Google Scholar
[6]
N. Yang, K. Guo, Y. Zhang, C. Xu, Engineering the valence state of ZIF-67 by Cu2O for efficient nonenzymatic glucose detection, J. Mater. Chem. B 8 (2020) 2856-2861.
DOI: 10.1039/d0tb00094a
Google Scholar
[7]
H. Yang, Z. Wang, Q. Zhou, C. Xu, J. Hou, Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values, Mikrochim. Acta 186 (2019) 631.
DOI: 10.1007/s00604-019-3728-7
Google Scholar
[8]
N. Cui, P. Guo, Q. Yuan, C. Ye, M. Yang, M. Yang, K.W.A. Chee, F. Wang, L. Fu, Q. Wei, C.-T. Lin, J. Gao, Single-step formation of Ni nanoparticle-modified graphene–diamond hybrid electrodes for electrochemical glucose detection, Sensors 19 (2019) 2979.
DOI: 10.3390/s19132979
Google Scholar
[9]
L. Parashuram, S. Sreenivasa, S. Akshatha, V. Udayakumar, S. Sandeep Kumar, A non-enzymatic electrochemical sensor based on ZrO2: Cu(I) nanosphere modified carbon paste electrode for electro-catalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis, Food Chem. 300 (2019) 125178.
DOI: 10.1016/j.foodchem.2019.125178
Google Scholar
[10]
Y.X. Chen, H.H. Zhang, H.G. Xue, X.Y. Hu, G.X. Wang, C.Y. Wang, Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles, Mat. Sci. Eng. C-Mater. 35 (2014) 420-425.
DOI: 10.1016/j.msec.2013.11.030
Google Scholar
[11]
J. Du, Y. Tao, Z. Xiong, X. Yu, A. Xie, S. Luo, X. Li, C. Yao, Titanium dioxide-graphene- polyaniline hybrid for nonenzymatic detection of glucose, Nano 14 (2019) 1950093.
DOI: 10.1142/s1793292019500930
Google Scholar
[12]
M. Li, J.R. Yang, M.J. Lu, Y.J. Zhang, X.J. Bo, Facile design of ultrafine Co7Fe3 nanoparticles coupled with nitrogen-doped porous carbon nanosheets for non-enzymatic glucose detection, J. Colloid Interf. Sci. 555 (2019) 449-459.
DOI: 10.1016/j.jcis.2019.07.099
Google Scholar
[13]
F. Mohammadi, M. Vesali-Naseh, A.A. Khodadadi, Y. Mortazavi, A Comparison of a Nanostructured Enzymeless Au/Fe2O3/MWCNTs/GCE Electrode and a GOx Modified One in Electrocatalytic Detection of Glucose, Electroanal. 30 (2018) 2044-2052.
DOI: 10.1002/elan.201800164
Google Scholar
[14]
A. Umar, K. Singh, S.K. Mehta, H. Fouad, O.Y. Alothman, Highly sensitive enzyme-less glucose biosensor based on alpha-Fe2O3 nanoparticles, Nanosci. Nanotech. Let. 10 (2018) 429-434.
DOI: 10.1166/nnl.2018.2668
Google Scholar
[15]
Y. Zhou, J. Yang, X. Yin, J. Zheng, N. Lu, M. Zhang, Enhanced synergistic effects from multiple iron oxide nanoparticles encapsulated within nitrogen-doped carbon nanocages for simple and label-free visual detection of blood glucose, Nanotechnology 30 (2019) 355501.
DOI: 10.1088/1361-6528/ab2026
Google Scholar
[16]
Z. Pan, G. Zhang, X. Wang, Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe2O3 : All-Solid-State Z-Scheme System for Photocatalytic Overall Water Splitting, Angew Chem. Int. Ed. Engl. (2019) 7102-7106.
DOI: 10.1002/anie.201902634
Google Scholar
[17]
J.Z. Zhao, M.X. Ji, J. Di, Y.P. Ge, P.F. Zhang, J.X. Xia, H.M. Li, Synthesis of g-C3N4/Bi4O5Br2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation, J. Photoch. Photobio. A 347 (2017) 168-176.
DOI: 10.1016/j.jphotochem.2017.07.023
Google Scholar
[18]
T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase, J. Mater. Chem. A 1 (2013) 6489-6496.
DOI: 10.1039/c3ta10472a
Google Scholar
[19]
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76-80.
DOI: 10.1038/nmat2317
Google Scholar
[20]
J. Zou, S. Wu, Y. Liu, Y. Sun, Y. Cao, J.-P. Hsu, A.T. Shen Wee, J. Jiang, An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection, Carbon 130 (2018) 652-663.
DOI: 10.1016/j.carbon.2018.01.008
Google Scholar
[21]
T. Lin, L. Zhong, J. Wang, L. Guo, H. Wu, Q. Guo, F. Fu, G. Chen, Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection, Biosens. Bioelectron. 59 (2014) 89-93.
DOI: 10.1016/j.bios.2014.03.023
Google Scholar
[22]
Y.L. Huang, Y. Tan, C.Q. Feng, S.Q. Wang, H.M. Wu, G.X. Zhang, Synthesis of CuO/g-C3N4 composites, and their application to voltammetric sensing of glucose and dopamine, Microchim. Acta 186 (2019).
DOI: 10.1007/s00604-018-3120-z
Google Scholar
[23]
J. Tashkhourian, S.F. Nami-Ana, M. Shamsipur, A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co(OH)2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection, Anal. Chim. Acta 1034 (2018) 63-73.
DOI: 10.1016/j.aca.2018.06.052
Google Scholar
[24]
L. Liu, W. Qi, X. Gao, C. Wang, G. Wang, Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection, J. Alloy. Compd. 745 (2018) 155-163.
DOI: 10.1016/j.jallcom.2018.02.199
Google Scholar
[25]
L. Liu, J. Wang, C. Wang, G. Wang, Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications, Appl. Surf. Sci. 390 (2016) 303-310.
DOI: 10.1016/j.apsusc.2016.08.093
Google Scholar
[26]
M.K. Kundu, M. Sadhukhan, S. Barman, Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose, J. Mater. Chem. B 3 (2015) 1289-1300.
DOI: 10.1039/c4tb01740d
Google Scholar
[27]
W. Huang, Q. He, Y. Hu, Y. Li, Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production, Angew. Chem. Int. Edit. 131 (2019) 8768-8772.
DOI: 10.1002/ange.201900046
Google Scholar
[28]
Y. Deng, Z. Zhang, P. Du, X. Ning, Y. Wang, D. Zhang, J. Liu, S. Zhang, X. Lu, Embedding ultrasmall au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance, Angew. Chem. Int. Ed. Engl. 59 (2020) 6082-6089.
DOI: 10.1002/anie.201916154
Google Scholar
[29]
C.Y. Liu, Y.H. Zhang, F. Dong, A.H. Reshak, L.Q. Ye, N. Pinna, C. Zeng, T.R. Zhang, H.W. Huang, Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis, Appl. Catal. B: Environ. 203 (2017) 465-474.
DOI: 10.1016/j.apcatb.2016.10.002
Google Scholar
[30]
G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Ionothermal Synthesis of Triazine-Heptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from Sea Water,, Angew Chem. Int. Ed. Engl. 57 (2018) 9372-9376.
DOI: 10.1002/anie.201804702
Google Scholar
[31]
S. Yin, J. Di, M. Li, Y.L. Sun, J.X. Xia, H. Xu, W.M. Fan, H.M. Li, Ionic liquid-assisted synthesis and improved photocatalytic activity of p-n junction g-C3N4/BiOCl, J. Mater. Sci. 51 (2016) 4769-4777.
DOI: 10.1007/s10853-016-9746-5
Google Scholar
[32]
X.Y. Wang, M.Y. Lu, J. Ma, P. Ning, L. Che, Synthesis of K-doped g-C3N4/carbon microsphere@graphene composite with high surface area for enhanced adsorption and visible photocatalytic degradation of tetracycline, J. Taiwan Inst. Chem. E. 91 (2018) 609-622.
DOI: 10.1016/j.jtice.2018.06.019
Google Scholar
[33]
L.T. Ma, H.Q. Fan, K. Fu, S.H. Lei, Q.Z. Hu, H.T. Huang, G.P. He, Protonation of Graphitic Carbon Nitride (g-C3N4) for an Electrostatically Self-Assembling Carbon@g-C3N4 Core Shell Nanostructure toward High Hydrogen Evolution, Acs Sustain. Chem. Eng. 5 (2017) 7093-7103.
DOI: 10.1021/acssuschemeng.7b01312
Google Scholar
[34]
Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-Scheme alpha-Fe2O3 /g-C3N4 hybrid for enhanced photocatalytic CO2 reduction, Adv. Mater. 30 (2018) 1706108.
DOI: 10.1002/adma.201706108
Google Scholar
[35]
Y. Wang, L. Rao, P. Wang, Y. Guo, X. Guo, L. Zhang, Porous oxygen-doped carbon nitride: supramolecular preassembly technology and photocatalytic degradation of organic pollutants under low-intensity light irradiation, Environ. Sci. Pollut. Res. Int. 26 (2019) 15710-15723.
DOI: 10.1007/s11356-019-04800-3
Google Scholar
[36]
S. Zhao, Y.W. Zhang, Y.Y. Wang, Y.M. Zhou, K.B. Qiu, C. Zhang, J.S. Fang, X.L. Sheng, Ionic liquid-assisted synthesis of Br-modified g-C3N4 semiconductors with high surface area and highly porous structure for photoredox water splitting, J. Power Sources 370 (2017) 106-113.
DOI: 10.1016/j.jpowsour.2017.10.023
Google Scholar
[37]
C. Wang, H.Q. Fan, X.H. Ren, J.W. Fang, J.W. Ma, N. Zhao, Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis, Mater. Charact. 139 (2018) 89-99.
DOI: 10.1016/j.matchar.2018.02.036
Google Scholar
[38]
X. Cao, N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays, Analyst 136 (2011) 4241-4246.
DOI: 10.1039/c1an15367f
Google Scholar
[39]
L.N.T. Mai, T.H. Tran, Q.B. Bui, H.T. Nhac-Vu, A novel nanohybrid of gold nanoparticles anchored copper sulfide nanosheets as sensitive sensor for nonenzymatic glucose detection, Colloid. surface. A 582 (2019) 123936.
DOI: 10.1016/j.colsurfa.2019.123936
Google Scholar