A Facile Synthesis of Cr Doped WO3 Nanostructures, Study of their Current-Voltage, Power Dissipation and Impedance Properties of Thin Films

Article Preview

Abstract:

Present work illustrates synthesis of Cr doped WO3 nanostructures (NS) (2 wt. %, 4 wt. % and 6 wt. %) by co precipitation method using surfactants and reported enhanced impedance, capacitance-voltage and current-voltage (I-V) characteristics. NS were characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Visible (UV-Vis) spectroscopy, pelletized samples performed I-V, C-V and impedance measurements. Impedance results reveal that the pelletized samples of highest doped Cr showed remarkable increase in admittance with respect to the biased voltage. I-V characteristics of highest doped Cr exhibited enhanced surface conductivity as compared with applied current. The output power considerably increases for the 6 wt. % of Cr doped WO3 and doping percentage of Cr increases surface conductivity, power output, admittance considerably enhances in the material matrix. This work demonstrated that Cr doped WO3 has more sensitivity towards I-V, C-V and impedance value considerably varies with the applied bias voltage. The limitation is not certain in case of doped nanomaterials of Cr-WO3, since these materials possesses nonlinear properties and can find applications in the diversified filed of nano electronics. The authors reported work can be a key guide for the upcoming researchers in the area of biomedical devices, nanoelectronics, sensors, wherein Cr-WO3 NS finds applications because of its enhanced I-V, C-V, Impedance characteristics. The work has been carried out to understand the electrical and electronic properties of doped nanomaterials in the original work place and analysis has been carried out at various institutions where the provisions for the experimentation is being made.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-42

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.G. Granqvist, Electrochromic oxides: a band structure approach, Sol. Energy Mater. Sol. Cells. 32 (1994) 369-382.

Google Scholar

[2] K. Bange, T. Gambke, Electrochromic Materials for optical switching devices, Adv. Mater. 2 (1990) 10-16.

DOI: 10.1002/adma.19900020103

Google Scholar

[3] Z.B. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes, Energy Environ. Sci., 4 (2011) 1866-1873.

DOI: 10.1039/c1ee01094h

Google Scholar

[4] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6, 2690 (2006).

DOI: 10.1021/nl061576a.s001

Google Scholar

[5] C.W. Kung, H.W. Chen, C.Y. Lin, R. Vittal, K.C. Ho, Low-temperature and template-free fabrication of cobalt oxide acicular nanotube arrays and their applications in supercapacitors, J. Power Sources 214 (2012) 91.

DOI: 10.1039/c4ta06811d

Google Scholar

[6] B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X.W. Lou, Green Synthesis of NiO Nanobelts with Exceptional Pseudo‐Capacitive Properties, Energy Mater. 2, (2012) 1188-1192.

DOI: 10.1002/aenm.201200008

Google Scholar

[7] Q. Qu, S. Yang, X. Feng, 2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors, Adv. Mater. 23 (2011) 5574-5580.

DOI: 10.1002/adma.201103042

Google Scholar

[8] D. Meng, N.M. Shaalan, T. Yamazaki, T. Kikuta, Preparation of tungsten oxide nanowires and their application to NO2 sensing, Sens. Actuators B Chem. 169 (2012) 113-120.

DOI: 10.1016/j.snb.2012.04.001

Google Scholar

[9] F. Han, H. Li, L. Fu, J. Yang, Z. Liu, Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation, Chem. Phys. Lett. 651 (2016) 183-187.

DOI: 10.1016/j.cplett.2016.03.017

Google Scholar

[10] C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties, Inorg. Chem. 51 (2012) 4763-4771.

DOI: 10.1021/ic300049j

Google Scholar

[11] A A. Kolmakov, M. Moskovits, Chemical sensing and catalysis byone-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151–180.

DOI: 10.1146/annurev.matsci.34.040203.112141

Google Scholar

[12] T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-basedheterostructural gas-sensing materials: a review, Sens. Actuators B Chem. 221 (2015) 1570–1585.

DOI: 10.1016/j.snb.2015.08.003

Google Scholar

[13] A R. Karimian, F. Piri, Synthesis and investigation the catalytic behavior of Cr2O3 nanoparticles, J. Nanostruct. 3 (2013) 87–92.

Google Scholar

[14] Q. Zhang, H. Zhang, M. Xu, Z. Shen, Q. Wei, A WO3 nanorod-Cr2O3 nanoparticle composite for selective gas sensing of 2-butanone, Chin. Chem.Lett. 29 (2018) 538–542.

DOI: 10.1016/j.cclet.2017.09.018

Google Scholar

[15] S. J. Choi, S. J. Kim, H. J. Cho, J. S. Jang, Y. M. Lin, H. L. Tuller, G. C. Rutledge and I. D. Kim, WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates Small, 12 (2016) 911–920.

DOI: 10.1002/smll.201502905

Google Scholar

[16] G.R. Bamwenda, H. Arakawa, the visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A 210 (2001) 181–191.

DOI: 10.1016/s0926-860x(00)00796-1

Google Scholar

[17] Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, Y. Li, Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J. Phys. Chem. C 116 (2012) 18626–18632.

DOI: 10.1021/jp304878u

Google Scholar

[18] X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B. Hu, T. Zhai, L. Gong, WO3—x/MoO3—x Core/Shell Nanowires on Carbon Fabric as an Anode for All-Solid-State Asymmetric Supercapacitors. Adv. Energy Mater. 2 (2012) 1328–1332.

DOI: 10.1002/aenm.201200380

Google Scholar

[19] T. Kikuchi, J. Kawashima, S. Natsui, R.O. Suzuki, Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst. Appl. Surf. Sci. 422 (2017)130–137.

DOI: 10.1016/j.apsusc.2017.05.256

Google Scholar

[20] Q. Du, L. Wang, J. Yang, J. Liu, Y. Yuan, M. Wang, B. Liu, X. Zhang, Y. Ren, H. Zhao, Enhancing gas sensing performances and sensing mechanism at atomic and molecule level of WO3 nanoparticles by hydrogenation. Sens. Actuators B Chem. 273, (2018) 1786–1793.

DOI: 10.1016/j.snb.2018.07.099

Google Scholar

[21] Y.B. Shen, H.S. Bi, T.T. Li, X.X. Zhong, X.X. Chen, A.F. Fan, D.Z. Wei, Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure. Appl. Surf. Sci. 434 (2018) 922–931.

DOI: 10.1016/j.apsusc.2017.11.046

Google Scholar

[22] A. Labidi, E. Gillet, R. Delamare, M. Maaref, K. Aguir, Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens. Actuators B Chem. 120 (2006) 338–345.

DOI: 10.1016/j.snb.2006.02.015

Google Scholar

[23] T. Sauerwald, D. Skiera, C.D. Kohl, Selectivity enhancement of gas sensors using non-equilibrium polarisation effects in metal oxide films. Appl. Phys. A 87 (2007) 525–529.

DOI: 10.1007/s00339-007-3980-2

Google Scholar

[24] T. Tesfamichael, A. Ponzoni, M. Ahsan, G. Faglia, Gas sensing characteristics of Fe-doped tungsten oxide thin films. Sens. Actuators B Chem. 168 (2012) 345–353.

DOI: 10.1016/j.snb.2012.04.032

Google Scholar

[25] Z. Wei, M.K. Akbari, Z. Hai, R.K. Ramachandran, C. Detavernier, F. Verpoort, E. Kats, H. Xu, J. Hu, S. Zhuiykov, Ultra-thin sub-10 nm Ga2O3-WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level. Sens. Actuators B Chem. 287 (2019) 147–156.

DOI: 10.1016/j.snb.2019.02.046

Google Scholar

[26] Y. Zhang, W. He, H. Zhao, P. Li, Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum 95, (2013) 30–34.

DOI: 10.1016/j.vacuum.2013.02.005

Google Scholar

[27] Y. Wang, B. Liu, S. Xiao, X. Wang, L. Sun, H. Li, W. Xie, Q. Li, Q. Zhang, T. Wang. Low Temperature H2S Detection with Hierarchical Cr-doped WO3 microspheres. ACS Appl. Mater. Interfaces 8 (2016) 9674–9683.

DOI: 10.1021/acsami.5b12857

Google Scholar

[28] J. Shi, Z. Cheng, L. Gao, Y. Zhang, J. Xu, H. Zhao, Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 230 (2016) 736–745.

DOI: 10.1016/j.snb.2016.02.134

Google Scholar

[29] M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali. Rapid synthesis of novel Cr‑doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. (2018).

DOI: 10.1007/s13738-018-1342-y

Google Scholar

[30] Z. Zhu, L. Zheng, S. Zheng, J. Chen, M. Liang, Y. Tian, D. Yang. Cr doped WO3 nanofibers enriched with surface oxygen vacancies for highly sensitive detection of the 3-hydroxy-2-butanone biomarker. J. Mater. Chem. A, 6 (2018) 21419.

DOI: 10.1039/c8ta08670b

Google Scholar

[31] P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Structural and optical study of Lidoped CuO thin films on Si (100) substrate deposited by pulsed laserdeposition, Appl. Surf. Sci. 307 (2014) 280–286.

DOI: 10.1016/j.apsusc.2014.04.027

Google Scholar

[32] S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2gas sensingperformances at room temperature based on reduced graphene oxide-ZnOnanoparticles hybrids, Sens. Actuators B Chem. 202 (2014) 272–278.

DOI: 10.1016/j.snb.2014.05.086

Google Scholar

[33] C. Sheng, C. Wang, H. Wang, C. Jin, Q. Sun, S. Li, Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability, J. Hazard. Mater. 328 (2017) 127-139.

DOI: 10.1016/j.jhazmat.2017.01.018

Google Scholar

[34] I. Jimenez, M.A. Centeno,  R. Scotti,  F. Morazzoni,  J. Arbiol, A. Corneta,  J.R. Morantea, NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications, J. Mater. Chem. 14 (2004) 2412-2420.

DOI: 10.1039/b400872c

Google Scholar

[35] X. Ding, D. Zeng, S. Zhang, C. Xie, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature, Sens. Actuators B Chem. 155, (2011) 86-92.

DOI: 10.1016/j.snb.2010.11.030

Google Scholar

[36] J. Kim, A. I. Inamdar, Yongcheol Jo, Hyeonseok Woo, Sangeun Cho, Sambhaji M. Pawar, Hyungsang Kim, and Hyunsik Im Effect of Electronegativity on Bipolar Resistive Switching in a WO3-Based Asymmetric Capacitor Structure. ACS Appl. Mater. Interfaces, 8 (2016) 9499-9505.

DOI: 10.1021/acsami.5b11781

Google Scholar

[37] Karla R. Reyes-Gil, Craig Wiggenhorn, Bruce S. Brunschwig, and Nathan S. Lewis Comparison between the Quantum Yields of Compact and Porous WO3 Photoanodes. J. Phys. Chem. C. 117 (2013) 14947-14957.

DOI: 10.1021/jp4025624

Google Scholar

[38] Y. Xiong, Z. Zhu, T. Guo, H. Li, Q. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application, J. Hazard. Mater. 353 (2018), 290-299.

DOI: 10.1016/j.jhazmat.2018.04.020

Google Scholar