[1]
C.G. Granqvist, Electrochromic oxides: a band structure approach, Sol. Energy Mater. Sol. Cells. 32 (1994) 369-382.
Google Scholar
[2]
K. Bange, T. Gambke, Electrochromic Materials for optical switching devices, Adv. Mater. 2 (1990) 10-16.
DOI: 10.1002/adma.19900020103
Google Scholar
[3]
Z.B. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes, Energy Environ. Sci., 4 (2011) 1866-1873.
DOI: 10.1039/c1ee01094h
Google Scholar
[4]
C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6, 2690 (2006).
DOI: 10.1021/nl061576a.s001
Google Scholar
[5]
C.W. Kung, H.W. Chen, C.Y. Lin, R. Vittal, K.C. Ho, Low-temperature and template-free fabrication of cobalt oxide acicular nanotube arrays and their applications in supercapacitors, J. Power Sources 214 (2012) 91.
DOI: 10.1039/c4ta06811d
Google Scholar
[6]
B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X.W. Lou, Green Synthesis of NiO Nanobelts with Exceptional Pseudo‐Capacitive Properties, Energy Mater. 2, (2012) 1188-1192.
DOI: 10.1002/aenm.201200008
Google Scholar
[7]
Q. Qu, S. Yang, X. Feng, 2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors, Adv. Mater. 23 (2011) 5574-5580.
DOI: 10.1002/adma.201103042
Google Scholar
[8]
D. Meng, N.M. Shaalan, T. Yamazaki, T. Kikuta, Preparation of tungsten oxide nanowires and their application to NO2 sensing, Sens. Actuators B Chem. 169 (2012) 113-120.
DOI: 10.1016/j.snb.2012.04.001
Google Scholar
[9]
F. Han, H. Li, L. Fu, J. Yang, Z. Liu, Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation, Chem. Phys. Lett. 651 (2016) 183-187.
DOI: 10.1016/j.cplett.2016.03.017
Google Scholar
[10]
C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties, Inorg. Chem. 51 (2012) 4763-4771.
DOI: 10.1021/ic300049j
Google Scholar
[11]
A A. Kolmakov, M. Moskovits, Chemical sensing and catalysis byone-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151–180.
DOI: 10.1146/annurev.matsci.34.040203.112141
Google Scholar
[12]
T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-basedheterostructural gas-sensing materials: a review, Sens. Actuators B Chem. 221 (2015) 1570–1585.
DOI: 10.1016/j.snb.2015.08.003
Google Scholar
[13]
A R. Karimian, F. Piri, Synthesis and investigation the catalytic behavior of Cr2O3 nanoparticles, J. Nanostruct. 3 (2013) 87–92.
Google Scholar
[14]
Q. Zhang, H. Zhang, M. Xu, Z. Shen, Q. Wei, A WO3 nanorod-Cr2O3 nanoparticle composite for selective gas sensing of 2-butanone, Chin. Chem.Lett. 29 (2018) 538–542.
DOI: 10.1016/j.cclet.2017.09.018
Google Scholar
[15]
S. J. Choi, S. J. Kim, H. J. Cho, J. S. Jang, Y. M. Lin, H. L. Tuller, G. C. Rutledge and I. D. Kim, WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates Small, 12 (2016) 911–920.
DOI: 10.1002/smll.201502905
Google Scholar
[16]
G.R. Bamwenda, H. Arakawa, the visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A 210 (2001) 181–191.
DOI: 10.1016/s0926-860x(00)00796-1
Google Scholar
[17]
Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, Y. Li, Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J. Phys. Chem. C 116 (2012) 18626–18632.
DOI: 10.1021/jp304878u
Google Scholar
[18]
X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B. Hu, T. Zhai, L. Gong, WO3—x/MoO3—x Core/Shell Nanowires on Carbon Fabric as an Anode for All-Solid-State Asymmetric Supercapacitors. Adv. Energy Mater. 2 (2012) 1328–1332.
DOI: 10.1002/aenm.201200380
Google Scholar
[19]
T. Kikuchi, J. Kawashima, S. Natsui, R.O. Suzuki, Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst. Appl. Surf. Sci. 422 (2017)130–137.
DOI: 10.1016/j.apsusc.2017.05.256
Google Scholar
[20]
Q. Du, L. Wang, J. Yang, J. Liu, Y. Yuan, M. Wang, B. Liu, X. Zhang, Y. Ren, H. Zhao, Enhancing gas sensing performances and sensing mechanism at atomic and molecule level of WO3 nanoparticles by hydrogenation. Sens. Actuators B Chem. 273, (2018) 1786–1793.
DOI: 10.1016/j.snb.2018.07.099
Google Scholar
[21]
Y.B. Shen, H.S. Bi, T.T. Li, X.X. Zhong, X.X. Chen, A.F. Fan, D.Z. Wei, Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure. Appl. Surf. Sci. 434 (2018) 922–931.
DOI: 10.1016/j.apsusc.2017.11.046
Google Scholar
[22]
A. Labidi, E. Gillet, R. Delamare, M. Maaref, K. Aguir, Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens. Actuators B Chem. 120 (2006) 338–345.
DOI: 10.1016/j.snb.2006.02.015
Google Scholar
[23]
T. Sauerwald, D. Skiera, C.D. Kohl, Selectivity enhancement of gas sensors using non-equilibrium polarisation effects in metal oxide films. Appl. Phys. A 87 (2007) 525–529.
DOI: 10.1007/s00339-007-3980-2
Google Scholar
[24]
T. Tesfamichael, A. Ponzoni, M. Ahsan, G. Faglia, Gas sensing characteristics of Fe-doped tungsten oxide thin films. Sens. Actuators B Chem. 168 (2012) 345–353.
DOI: 10.1016/j.snb.2012.04.032
Google Scholar
[25]
Z. Wei, M.K. Akbari, Z. Hai, R.K. Ramachandran, C. Detavernier, F. Verpoort, E. Kats, H. Xu, J. Hu, S. Zhuiykov, Ultra-thin sub-10 nm Ga2O3-WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level. Sens. Actuators B Chem. 287 (2019) 147–156.
DOI: 10.1016/j.snb.2019.02.046
Google Scholar
[26]
Y. Zhang, W. He, H. Zhao, P. Li, Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum 95, (2013) 30–34.
DOI: 10.1016/j.vacuum.2013.02.005
Google Scholar
[27]
Y. Wang, B. Liu, S. Xiao, X. Wang, L. Sun, H. Li, W. Xie, Q. Li, Q. Zhang, T. Wang. Low Temperature H2S Detection with Hierarchical Cr-doped WO3 microspheres. ACS Appl. Mater. Interfaces 8 (2016) 9674–9683.
DOI: 10.1021/acsami.5b12857
Google Scholar
[28]
J. Shi, Z. Cheng, L. Gao, Y. Zhang, J. Xu, H. Zhao, Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 230 (2016) 736–745.
DOI: 10.1016/j.snb.2016.02.134
Google Scholar
[29]
M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali. Rapid synthesis of novel Cr‑doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. (2018).
DOI: 10.1007/s13738-018-1342-y
Google Scholar
[30]
Z. Zhu, L. Zheng, S. Zheng, J. Chen, M. Liang, Y. Tian, D. Yang. Cr doped WO3 nanofibers enriched with surface oxygen vacancies for highly sensitive detection of the 3-hydroxy-2-butanone biomarker. J. Mater. Chem. A, 6 (2018) 21419.
DOI: 10.1039/c8ta08670b
Google Scholar
[31]
P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Structural and optical study of Lidoped CuO thin films on Si (100) substrate deposited by pulsed laserdeposition, Appl. Surf. Sci. 307 (2014) 280–286.
DOI: 10.1016/j.apsusc.2014.04.027
Google Scholar
[32]
S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2gas sensingperformances at room temperature based on reduced graphene oxide-ZnOnanoparticles hybrids, Sens. Actuators B Chem. 202 (2014) 272–278.
DOI: 10.1016/j.snb.2014.05.086
Google Scholar
[33]
C. Sheng, C. Wang, H. Wang, C. Jin, Q. Sun, S. Li, Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability, J. Hazard. Mater. 328 (2017) 127-139.
DOI: 10.1016/j.jhazmat.2017.01.018
Google Scholar
[34]
I. Jimenez, M.A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Corneta, J.R. Morantea, NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications, J. Mater. Chem. 14 (2004) 2412-2420.
DOI: 10.1039/b400872c
Google Scholar
[35]
X. Ding, D. Zeng, S. Zhang, C. Xie, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature, Sens. Actuators B Chem. 155, (2011) 86-92.
DOI: 10.1016/j.snb.2010.11.030
Google Scholar
[36]
J. Kim, A. I. Inamdar, Yongcheol Jo, Hyeonseok Woo, Sangeun Cho, Sambhaji M. Pawar, Hyungsang Kim, and Hyunsik Im Effect of Electronegativity on Bipolar Resistive Switching in a WO3-Based Asymmetric Capacitor Structure. ACS Appl. Mater. Interfaces, 8 (2016) 9499-9505.
DOI: 10.1021/acsami.5b11781
Google Scholar
[37]
Karla R. Reyes-Gil, Craig Wiggenhorn, Bruce S. Brunschwig, and Nathan S. Lewis Comparison between the Quantum Yields of Compact and Porous WO3 Photoanodes. J. Phys. Chem. C. 117 (2013) 14947-14957.
DOI: 10.1021/jp4025624
Google Scholar
[38]
Y. Xiong, Z. Zhu, T. Guo, H. Li, Q. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application, J. Hazard. Mater. 353 (2018), 290-299.
DOI: 10.1016/j.jhazmat.2018.04.020
Google Scholar