Nanofluid Droplet Evaporation Kinetics and Wetting Dynamics on Flat Substrates

Article Preview

Abstract:

An experimental investigation into the evaporation of sessile nanofluid droplets is reported in this paper. The effect of nano-particle addition on the evaporative behaviour is studied using ethanol and Titanium Oxide nano-particles. The results show that a distinct ‘stick-slip’ pinning behaviour is observed when nano-particles are added to the base liquid. Increasing the nano-particle concentration was found to enhance the ‘stick-slip’ behaviour. This behaviour is attributed to the effects of evaporatively driven particle accumulation near the contact line. This in turn leads to an increase in localised viscosity, and an enhancement of contact line pinning.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

July 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Maxwell, J.C., A Treatise on Electricity and Magnetism, . Clarendon Press, Oxford, UK 1881. 2nd ed.

Google Scholar

[2] Eastman, J.A., et al. Enhanced thermal conductivity through the development of nanofluids. 1996. United States.

Google Scholar

[3] H. Masuda, A.E., K. Teramae and N. Hishinuma , Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of γ-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei, 1993. 4: p. pp.227-233.

DOI: 10.2963/jjtp.7.227

Google Scholar

[4] Keblinski, P., J.A. Eastman, and D.G. Cahill, Nanofluids for thermal transport. Materials Today, 2005. 8(6): p.36.

DOI: 10.1016/s1369-7021(05)70936-6

Google Scholar

[5] Lee, S., et al., Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer ; VOL. 121 ; ISSUE: 2 ; PBD: May 1999, 1999: p. pp.280-289 ; PL.

DOI: 10.1115/1.2825978

Google Scholar

[6] Murshed, S.M.S., K.C. Leong, and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences, 2005. 44(4): p.367.

DOI: 10.1016/j.ijthermalsci.2004.12.005

Google Scholar

[7] Picknett, R.G. and R. Bexon, The evaporation of sessile or pendant drops in still air. Journal of Colloid and Interface Science, 1977. 61(2): pp.336-350.

DOI: 10.1016/0021-9797(77)90396-4

Google Scholar

[8] Hu, H. and R.G. Larson, Evaporation of a Sessile Droplet on a Substrate. J. Phys. Chem. B, 2002. 106(6): pp.1334-1344.

DOI: 10.1021/jp0118322

Google Scholar

[9] Shanahan, M.E.R. and C. Bourgès, Effects of evaporation on contact angles on polymer surfaces. International Journal of Adhesion and Adhesives, 1994. 14(3): pp.201-205.

DOI: 10.1016/0143-7496(94)90031-0

Google Scholar

[10] Guéna, G., et al., Evaporation of sessile liquid droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 291(1-3): pp.191-196.

DOI: 10.1016/j.colsurfa.2006.07.021

Google Scholar

[11] Shanahan, M.E.R., Simple Theory of Stick-slip, Wetting Hysterisis. Langmuir, 1995. 11: pp.1041-1043.

DOI: 10.1021/la00003a057

Google Scholar

[12] Birdi, K.S., Vu, D.T., Wettability and the evaporation rates of fluids from solid surfaces. J. Adhes. Sci. Technol., 1993. 7: p.485.

Google Scholar

[13] Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997. 389(6653): pp.827-829.

DOI: 10.1038/39827

Google Scholar

[14] Chen, H., et al., Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters, 2007. 444(4-6): pp.333-337.

DOI: 10.1016/j.cplett.2007.07.046

Google Scholar