Non Parabolic Shift of Interfaces and Effect of Diffusion Asymmetry on Nanoscale Solid State Reactions

Article Preview

Abstract:

In a set of recent papers we have shown that the diffusion asymmetry in diffusion couples (the diffusion coefficient is orders of magnitude larger in one of the parent materials) leads to interesting phenomena: i) sharp interface remains sharp and shifts with non Fickian (anomalous) kinetics [1-5], ii) originally diffuse interface sharpens even in ideal (completely miscible) systems [6,7], iii) an initially existing thin AB phase in A/AB/B diffusion couple can be dissolved [8], iv) there exists a crossover thickness (typically between few nanometers and 1m) above which the interface shift turns back to the Fickian behaviour [9], v) the growth rate of a product of solid state reaction can be linear even if there is no any extra potential barrier present (which is the classical interpretation of the “interface reaction control” for linear kinetics) [10]. These latter results will be summarized and reformulated according to the usual expression for linear-parabolic law containing the interdiffusion coefficient, D, and interface transfer coefficient, K. Relation between the activation energies of D and K will be analyzed and compared with available experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

July 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.L. Beke, Z. Erdélyi, I.A. Szabó, C. Cserháti: in Nanodiffusion p.107, D.L. Beke, Ed. (Trans Tech, Uetikon-Zuerich, 2004).

Google Scholar

[2] Z. Erdélyi¸ Ch. Girardeaux¸ Zs. Tőkei, D.L. Beke, C. Cserháti, and A. Rolland: Surf. Sci. Vol. 496 (2002), p.129.

Google Scholar

[3] A. Csik, G.A. Langer, D.L. Beke, Z. Erdélyi, M. Menyhárd A. Sulyok: J. Appl. Phys Vol. 89 (2001), p.804.

Google Scholar

[4] G.L. Katona, Z. Erdélyi, D.L. Beke, Ch. Dietrich, F. Weigl, H. -G. Boyen, B. Koslowski, and P. Ziemann: Phys. Rev. B Vol. 71 (2004), p.115432.

DOI: 10.1103/physrevb.71.115432

Google Scholar

[5] Z. Balogh, Z. Erdélyi, D.L. Beke, G. A. Langer, A. Csik, H-G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, and Ch. Girardeaux: Appl. Phys. Lett. Vol. 92 (2008), p.143104.

DOI: 10.1063/1.2908220

Google Scholar

[6] Z. Erdélyi¸ I.A. Szabó, D.L. Beke, : Phys. Rev. Lett. Vol. 89 (2002), p.165901.

Google Scholar

[7] Z. Erdélyi, M. Sladecek, L. -M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga, D. L. Beke, and B. Sepiol: Science Vol. 306 (2004), p. (1913).

DOI: 10.1126/science.1104400

Google Scholar

[8] Z. Erdélyi, D.L. Beke, A. Tranovskyy, Appl. Phys. Lett. Vol. 93 (2008), p.133110.

Google Scholar

[9] D.L. Beke, Z. Erdélyi: Phys. Rev. B Vol. 73 (2006), p.035426.

Google Scholar

[10] C. Cserháti, Z. Balogh, Gy. Glodán, A. Csik, G.A. Langer, Z. Erdélyi, G.L. Katona, D.L. Beke, I. Zizak, N. Darowski, E. Dudzik, and R. Feyerherm: J. of Appl. Phys., in print (2008).

DOI: 10.1063/1.2957071

Google Scholar

[11] Ja.E. Geguzin, Ju.Y. Kaganovskii: Fizika Met. Metallov. (Russian) Vol. 39 (1975), p.553.

Google Scholar

[12] F.M. d'Heurle, P. Gas, J. Philibert, O. Thomas: Metals Materials and Processes, Vol. 11 (1999), p.217.

Google Scholar

[13] U. Gössele, K.N. Tu: J. Appl. Phys. Vol. 53 (1982), p.3252.

Google Scholar

[14] J. Philibert: Mater. Sci. Forum, Vol. 155-156 (1994), p.31.

Google Scholar

[15] P.J. Desre, A:R. Yavari: Phys. Rev. Lett. Vol. 64 (1990), p.1553.

Google Scholar

[16] A.M. Gusak, F. Hodaj, A.O. Bogatyev: J. Phys. -Condens. Mat. Vol. 13 (2001), p.2767.

Google Scholar

[17] H. Schmalzried: Chemical Kinetics of Solids, VCH Publ. New York (1995) p.422.

Google Scholar

[18] P. Maugis, G. Martin: Phys Rev. B Vol. 49 (1994), p.11580.

Google Scholar

[19] B. E. Deal and A. Groves: J. Appl. Phys. Vol. 36 (1965), p.3770.

Google Scholar

[20] F. Nemouchi, D. Mangelick, C. Bergmann, P. Gas, U. Smith: Appl. Phys. Lett. Vol. 86 (2005), p.041903.

Google Scholar

[21] G. Martin: Phys Rev. B Vol. 41 (1990), p.2279.

Google Scholar

[22] C. Cserháti, H. Bakker, D.L. Beke: Surf. Sci. Vol. 290 (1993), p.345.

Google Scholar

[23] J. Bernardini, D.L. Beke, Diffusion in Nanomaterials" in "Nanocrysalline Metals and Oxides: Selected Propreties and Applications, (Eds.P. Knauth and J. Schoonman) Kluwer Publ. Boston, (2001).

Google Scholar

[24] D.L. Beke, C. Cserháti, Z. Erdélyi, I. A Szabó, Segregation in Nanostructures" in "Advances in Nanophase Materials and Nanotechnology" Vol. "Nanoclusters and Nanocrystals, (Ed. H.S. Nalwa) American Scientific Publ. Califronia USA, (2003) p.211.

Google Scholar

[25] Z. Erdélyi, D.L. Beke: Phys. Rev. B Vol. 70 (2004), pp.245428-1.

Google Scholar

[26] Z. Erdélyi, D.L. Beke, P. Nemes, G.A. Langer: Phil. Mag. A Vol. 79 (1999), p.1757.

Google Scholar

[27] Z. Erdélyi, G.L. Katona, D.L. Beke: Phys. Rev. B Vol. 69 (2004), pp.113407-1.

Google Scholar

[28] G. Neumann, V. Tölle: Phil. Mag. A Vol. 57 (1993), p.621.

Google Scholar

[29] S.M. Prokes: PhD Thesis (Harward University) 1986 p.113.

Google Scholar

[30] A. Mackleit. Phys. Rev. Vol. 109 (1958), p. (1964).

Google Scholar