The Synthesis, Stability and Shrinkage of Hollow Nanoparticles: An Overview

Article Preview

Abstract:

Recently, there has been a great deal of interest in the properties of hollow nanoparticles for use in advanced technologies. The diffusion phenomenon known as the Kirkendall effect features in one of the important experimental methods of synthesis of hollow binary nanoparticles. Diffusion naturally features prominently in shrinkage mechanisms of hollow nanoparticles. In this paper, we summarize the progress made so far in understanding the formation and shrinkage by diffusion processes of hollow nanoparticles and their apparent stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

July 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos: Science Vol. 304 (2004), p.711.

Google Scholar

[2] A.D. Smigelskas and E.O. Kirkendall: Trans AIME, Vol. 171 (1947), p.130.

Google Scholar

[3] C.M. Wang, D.R. Baer, L.E. Thomas, J.E. Amonette, J. Antony, Y. Qiang and G. Duscher, J: Appl. Phys. Vol. 98 (2005), p.94308.

Google Scholar

[4] C. Han, X. Wu, Y. Lin, G. Gu, X. Fu, Z. Hi: J. Mater. Sci. Vol. 41 (2006), p.3679.

Google Scholar

[5] R. Nakamura, D. Tokozakura and H. Nakajima: J. Appl. Phys. Vol. 101 (2007), p.074303.

Google Scholar

[6] R. Nakamura, J-G Lee, D. Tokozakura, H. Mori and H. Nakajima: Mater. Lett. Vol. 61 (2007), p.1060.

Google Scholar

[7] R. Nakamura, J-G Lee, D. Tokozakura, H. Mori and H. Nakajima: Phil. Mag. Vol. 88 (2008), p.257.

Google Scholar

[8] C.H. Ng, H. Tan and W.Y. Fan: Langmuir Vol. 22 (2006), p.9712.

Google Scholar

[9] J. Gao, B. Zhang, X. Zhang and B. Xu: Angew. Chem. Int. Ed. Vol. 45 (2006), p.1220.

Google Scholar

[10] Q. Li and R. M. Penner: Nano Lett. Vol. 5 (2005), p.1720.

Google Scholar

[11] H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias and U. Gösele: Nature Mater. Vol. 5 (2006), p.627.

DOI: 10.1038/nmat1673

Google Scholar

[12] F. Aldinger: Acta Met. Vol 22 (1974), p.923.

Google Scholar

[13] Y.E. Geguzin, Why and how vacancies disappear, Science Publishers, Moscow, (1976).

Google Scholar

[14] Y. Sun, B. Mayers and Y. Xia: Adv. Mater. Vol. 15 (2003), p.641.

Google Scholar

[15] K.N. Tu and U. Gösele: Appl. Phys. Lett. Vol. 86 (2005), p.093111.

Google Scholar

[16] I.V. Belova and G.E. Murch: J. Phase Equil. Diffus. Vol. 26 (2005), p.430.

Google Scholar

[17] Prasad and Paul: Appl. Phys. Lett. Vol. 90 (2004), p.233114.

Google Scholar

[18] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: Defect and Diffus. Forum, to be published.

Google Scholar

[19] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller: J. Chem. Phys. Vol. 21 (1953), p.1087.

DOI: 10.1063/1.1699114

Google Scholar

[20] A.M. Gusak, T.V. Zaporozhets, K.N. Tu and U. Gösele: Phil. Mag. Vol. 85 (2005), p.4445.

Google Scholar

[21] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: Phil. Mag. Vol. 87 (2007), p.3787.

Google Scholar

[22] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: Sol. St. Phen. Vol. 129 (2007), p.125.

Google Scholar

[23] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: Phil. Mag., accepted for publication and in press.

Google Scholar

[24] L.K. Moleko, A.R. Allnatt and E.L. Allnatt: Phil. Mag. A Vol. 59 (1989), p.141.

Google Scholar

[25] F.D. Fischer and J. Svoboda, J. Nanopart Res. Vol. 10 (2008), p.255.

Google Scholar