Diffusion in Intermetallic Compounds and Fabrication of Hollow Nanoparticles through Kirkendall Effect

Article Preview

Abstract:

. In intermetallic compounds, random vacancy motion is not possible as it would disrupt the equilibrium ordered arrangement of atoms on lattice sites. In view of this limitation, various atomistic models have been proposed, which allow atom-vacancy exchanges to take place without concomitant long range disordering. For a L12 -type A3B structure, the major element A diffuses faster than the minor element B. The trend is attributed to the different diffusing paths; A atoms can diffuse through site exchanges with a neighbouring vacancy on its own sublattice, while the jump of a B atom to a neighbouring site always creates wrong bonds. For L10-type structures such as γ-TiAl, significant diffusion anisotropy is observed; Ti atoms diffuse on the Ti sublattice, while Al atoms also diffuse on the Ti sublattice. The formation of hollow metal oxide nanoparticles through the oxidation process has been studied by transmission electron microscopy for Cu, Zn, Al, Pb and Ni. The hollow structure is obtained as a result of vacancy aggregation, resulting from the rapid outward diffusion of metal ions through the oxide layer during the oxidation process. This suggests the occurrence of two different diffusion processes in the formation of hollow oxides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

July 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.B. Huntington: private communication to Slifkin (1967).

Google Scholar

[2] M. Arita, M. Koiwa and S. Ishioka: Phil. Mag. Vol. 60 (1989), p.563.

Google Scholar

[3] H. Bakker, N.A. Stolwijk and M.A. Hoetjes-Eljkel: Phil. Mag. Vol. 43 (1981), p.251.

Google Scholar

[4] H. Numakura, T. Ikeda, H. Nakajima and M. Koiwa: Mater. Sci. Eng. Vol. A312 (2001), p.109.

Google Scholar

[5] T. Ikeda, H. Kadowaki and H. Nakajima: Acta Mater. Vol. 49 (2001), p.3475.

Google Scholar

[6] Y. Nose, N. Terashita, T. Ikeda and H. Nakajima: Acta Mater. Vol. 54 (2006), p.2511.

Google Scholar

[7] Y. Mishin: private communication (2002).

Google Scholar

[8] U. Brossmann, R. Wurschum, K.A. Badura and H. -E. Schaefer: Phys. Rev. B Vol. 49 (1994), p.6457.

Google Scholar

[9] C.L. Fu and M.H. Yoo: Intermetallics Vol. 1 (1993), p.59.

Google Scholar

[10] Y. Xia and N.J. Halas: MRS Bulletin Vol. 30 (2005), p.338.

Google Scholar

[11] Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai and A.P. Alivisatos: Science Vol. 304 (2004), p.711.

Google Scholar

[12] R. Nakamura, J.G. Lee, D. Tokozakura, H. Mori and H. Nakajima: Mater. Lett. Vol. 61 (2007), p.1060.

Google Scholar

[13] R. Nakamura, D. Tokozakura, H. Nakajima, J.G. Lee and H. Mori: J. Appl. Phys. Vol. 101 (2007), p.074303.

Google Scholar

[14] R. Nakamura, J.G. Lee, H. Mori and H. Nakajima: Phil. Mag. Vol. 88 (2008), p.257.

Google Scholar

[15] B.A. Thompson and R.L. Strong: J. Phys. Chem. Vol. 67 (1963) p.594.

Google Scholar

[16] N.L. Peterson and C.L. Wiley: J. Phys. Chem. Solids Vol. 45 (1984), p.281. Fig. 9. TEM images of Ni nanoparticles oxidized (a) at 573 K for 7. 2 ks and (b) at 673 K for 1. 8 ks.

Google Scholar

[17] W.J. Moore, Y. Ebisuzaki and J.A. Sluss: J. Phys. Chem. Vol. 62 (1958), p.1438.

Google Scholar

[18] W.J. Moore and E.L. Williams: Discussions Faraday Soc. Vol. 28 (1959), p.86.

Google Scholar

[19] J.W. Hoffman and I. Lauder: Trans. Faraday Soc. Vol. 66 (1970), p.2346.

Google Scholar

[20] M.L. Gall, B. Lesage and J. Bernardini: Phil. Mag. A Vol. 70 (1994), p.761.

Google Scholar

[21] D. Prot and C. Monty: Phil. Mag. A, Vol. 73 (1996), p.899.

Google Scholar

[22] N. Cabrera and N.F. Mott: Rep. Prog. Phys. Vol. 12 (1948-49), p.163.

Google Scholar

[23] A. Atkinson and R. I. Taylor: Phil. Mag. A Vol. 39 (1979), p.581.

Google Scholar

[24] K. Maier, H. Mehrer, E. Lessmann and W. Schule: Physica Status Solidi (b) Vol. 78 (1976), p.689.

Google Scholar