[1]
F. Schwierz: Graphene transistors: Status, prospects, and problems, Proc. IEEE. Vol.101 (2013), p.15671584.
DOI: 10.1109/jproc.2013.2257633
Google Scholar
[2]
N. Harada, S. Sato, N. Yokoyama, Theoretical Investigation of Graphene Nanoribbon Field- Effect Transistors Designed for Digital Applications, Jpn. J. Appl. Phys. Vol.52 (2013), p.094301.
DOI: 10.7567/jjap.52.094301
Google Scholar
[3]
Y.W. Son, M. Cohen, Louie S. Energy gaps in graphene nanoribbons, Phys. Rev. Lett. Vol.97 (2006), art. 216803.
DOI: 10.1103/physrevlett.98.089901
Google Scholar
[4]
W. X. Wang, M. Zhou, X. Li, Li Si-Yu, X. Wu, W. Duan, Lin He: Energy gaps of atomically precise armchair graphene sidewall nanoribbons, Phys. Rev. Vol. B93 (2016), p.241403(R).
DOI: 10.1103/physrevb.93.241403
Google Scholar
[5]
Y. C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. Fischer, M. F. Crommie 2013 Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano. Vol. B7 (2013) p.61236128.
DOI: 10.1021/nn401948e
Google Scholar
[6]
L. Talirz, P. Ruffieux, R. Fasel: On-surface synthesis of atomically precise graphene nanoribbons, Adv. Mater. Vol. 28 (2016), p.62226231.
DOI: 10.1002/adma.201505738
Google Scholar
[7]
P. Nemes-Inczea, L. Tapasztoa, G. Z. Magdaa, Z. Osvatha, G. Dobrika, X. Jinb, C. Hwangb, L. P. Biroa: Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates, Appl. Surf. Sci. Vol. 291 (2014), p.4852.
DOI: 10.1016/j.apsusc.2013.11.012
Google Scholar
[8]
G.C. Liang, N. Neophytou, M. S. Lundstrom, D.E. Nikonov: Ballistic graphene nanoribbon metal-oxide-semiconductor fieldeffect transistors: a full real-space quantum transport simulation, J. Appl. Phys. Vol. 102 (2007) p.054307.
DOI: 10.1063/1.2775917
Google Scholar
[9]
Y. Ouyang, Y. Yoon, J. K. Fodor, J. Guo: Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors, Appl. Phys. Lett. Vol. 89 (2006) 203107.
DOI: 10.1063/1.2387876
Google Scholar
[10]
G. Liang, N. Neophytou, M. Lundstrom, D. Nikonov: Computational study of double-gate graphene nanoribbon transistors, J. Comput. Electron. Vol. 7(3) (2008), p.394397.
DOI: 10.1007/s10825-008-0243-1
Google Scholar
[11]
A. Y. Goharrizi, M. Pourfath, M. Fathipour M. and H. Kosina: Device Performance of Graphene Nanoribbon Field-Effect Transistors in the Presence of Line-Edge Roughness, IEEE Trans. Electron Devices. Vol. 59 (2012), p.35273532.
DOI: 10.1109/ted.2012.2218817
Google Scholar
[12]
Chin Sai-Kong, Lam Kai-Tak, Seah Dawei Seah et al.: Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding p-bond model, Nanoscale Res. Lett. Vol. 7 (2012), p.114.
DOI: 10.1186/1556-276x-7-114
Google Scholar
[13]
Y. M. Banadaki and A. Srivastava: Investigation of the width-dependent static characteristics of graphene nanoribbon field-effect transistors, Solid-State Electronics Vol.111 (2015), p.8090.
DOI: 10.1016/j.sse.2015.05.003
Google Scholar
[14]
B. Rawat, R. Paily: Performance projection of bilayer graphene nanoribbon FET through quantum mechanical simulation, Semiconductor Sci. Technol. Vol. 31(12) (2016), p.125004.
DOI: 10.1088/0268-1242/31/12/125004
Google Scholar
[15]
K. L.Wong, M.W. Chuan, A. Hamzah, S. Rusli, N. E. Alias, S. M. Sultan, C. S. Lim and M.L.P. Tan 2020 Carrier transport of rough-edged doped GNRFETs with metal contacts at various channel widths, Superlattices and Microstructures Vol. 143 (2020), p.106548.
DOI: 10.1016/j.spmi.2020.106548
Google Scholar
[16]
G. S. Kliros: Gate capacitance modeling and width - dependent performance of graphene nanoribbon transistors, Microelectron. Eng. Vol. 112 (2013), p.220226.
DOI: 10.1016/j.mee.2013.04.011
Google Scholar
[17]
G. Hu, S. Hu, R. Liu, L. Wang, X. Zhou, and T.-A. Tang: Quasiballistic transport model for graphene field-effect transistor, IEEE Trans. Electron Devices. Vol. 60 (2013), p.24102414.
DOI: 10.1109/ted.2013.2264094
Google Scholar
[18]
V.M. Pereira, A.H. Castro Neto : Strain Engineering of Graphene's Electronic Structure, Phys. Rev. Lett. Vol. 103 (2009), p.046801.
Google Scholar
[19]
C. Chen W.K. Tak, L.G. Hong, M. Gong, B. Zhang, Y. Lu, A. L. Antaris, S. Diao, J. Guo and H. Dai: Graphene Nanoribbons under Mechanical Strain, Adv. Mater. Vol. 27 (2015). p.303309.
DOI: 10.1002/adma.201403750
Google Scholar
[20]
Z. Liao, L. M. Sandonas, T. Zhang, M. Gall, A. Dianat, R. Gutierrez, U. Muhle, J. Gluch, R. Jordan, G. Cuniberti, E. Zschech: In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope, Sci. Rep. Vol. 7 (2017), p.211.
DOI: 10.1038/s41598-017-00227-3
Google Scholar
[21]
Lv Yawei, Ye Shizhuo, Hao Wang, He Jin, Huang Qijun, Sheng Chang: Strain engineering of chevron graphene nanoribbons, J.Appl. Phys. Vol. 125 (2019), p.082501.
DOI: 10.1063/1.5048527
Google Scholar
[22]
V. H. Nguyen, Y. M. Niquet, P. Dollfus: Gate-controllable negative differential conductance in graphene tunneling transistors, Semicond. Sci. Technol. Vol. 27 (2012), p.105018.
DOI: 10.1088/0268-1242/27/10/105018
Google Scholar
[23]
M. Zoghi, A. Y. Goharrizi: Strain-induced armchair graphene nanoribbon resonant-tunneling diodes, IEEE Trans. Electron Devices. Vol. 64 (2017), p.43224326.
DOI: 10.1109/ted.2017.2738838
Google Scholar
[24]
M. Zoghi, M. Z. Kabir: Effects of uniaxial strain on the performance of armchair graphene nanoribbon resonant-tunneling diodes, Semicond. Sci. Technol, Vol. 34 (2019), p.055012.
DOI: 10.1088/1361-6641/ab0efc
Google Scholar
[25]
A. Y. Goharrizi: Resonant Tunneling Diode by Means of Compound Armchair Boron-Nitride and Graphene Nanoribbons, Journal of Electronic Materials, Vol. 48(2) (2019), p.12351242.
DOI: 10.1007/s11664-018-6818-0
Google Scholar
[26]
Y. Lu, J. Guo: Band Gap of Strained Graphene Nanoribbons, Nano Res. Vol. 3 (2010), p.189199.
DOI: 10.1007/s12274-010-1022-4
Google Scholar
[27]
Y. Li, X. Jiang, Z. Liu, Zh Liu: Strain effects in graphene and graphene nanoribbons: the underlying mechanism, Nano Res. Vol. 3 (2010), p.545556.
DOI: 10.1007/s12274-010-0015-7
Google Scholar
[28]
X. H. Peng, S. Velasquez: Strain modulated band gap of edge passivated armchair graphene nanoribbons, Appl. Phys. Lett. Vol. 98 (2011), p.023112.
DOI: 10.1063/1.3536481
Google Scholar
[29]
F. Ma, Z. Guo, K. Xu, P.K. Chu: First-principle study of energy band structure of armchair graphene nanoribbons, Solid State Commun. Vol. 152 (2012), p.10891093.
DOI: 10.1016/j.ssc.2012.04.058
Google Scholar
[30]
K. Alam: Uniaxial strain effects on the performance of a ballistic top gate graphene nanoribbon on insulator transistor, IEEE Trans. Nanotechnol. Vol. 8 (2009), p.528534.
DOI: 10.1109/tnano.2008.2011811
Google Scholar
[31]
N. R. Moslemi, Sheikhi, K. Saghafi and M. K. Moravvej-Farshi: Electronic properties of a dual-gated GNR-FET under uniaxial tensile strain, Microelectron. Reliab. Vol. 52 (2012), p.25792584.
DOI: 10.1016/j.microrel.2012.05.009
Google Scholar
[32]
G. S. Kliros: Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field effect transistors, Nanoscale Res. Lett. Vol. 9:65 (2014), p.111.
DOI: 10.1186/1556-276x-9-65
Google Scholar
[33]
N. Sano: Kinetics of Quasiballistic Transport in Nanoscale Semiconductor Structures: Is the Ballistic Limit Attainable at Room Temperature?, Phys. Rev. Lett. Vol. 93 (2004), p.246803.
DOI: 10.1103/physrevlett.93.246803
Google Scholar
[34]
G. S. Kliros: Study of Strain Effects on Graphene Nanoribbon FETs Using Quasi-ballistic Transport Model, Proc. IEEE 18th Int. Conf. Nanotechnol. (IEEE-NANO), Cork, Ireland (2018) p.429425.
DOI: 10.1109/nano.2018.8626283
Google Scholar
[35]
G. S. Kliros: Scaling effects in the gate capacitance of graphene nanoribbon transistors, Proc. of IEEE Int. Semiconductor Conf. (CAS), Sinaia, Romania, (2012) p.8386.
DOI: 10.1109/smicnd.2012.6400691
Google Scholar
[36]
D. Gunlycke, C.T. White: Tightbinding energy dispersions of armchair-edge graphene nanostrips, Phys. Rev. B. Vol. 77 (2008) p.115116.
DOI: 10.1103/physrevb.77.115116
Google Scholar
[37]
W. A. Harrison: Tight-binding methods, Surf. Sci. Vol. 299 (1994), p.298310.
Google Scholar
[38]
O.L. Blakslee, D.G. Proctor, E.J. Seldin et al: Elastic Constants of Compression-Annealed Pyrolytic Graphite, J. Appl.Phys. Vol. 41 (1970), 33733382.
DOI: 10.1063/1.1659428
Google Scholar
[39]
R. Grassi, S. Poli S, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani: Tight binding and effective mass modeling of armchair graphene nanoribbon FETs, Solid State Electron. Vol. 53(4) (2009), p.462467.
DOI: 10.1016/j.sse.2008.07.015
Google Scholar
[40]
G. S. Kliros: Strain effects on the quantum capacitance of graphene nanoribbon devices, Appl. Surf. Sci. Vol. 502 (2020) 144292.
DOI: 10.1016/j.apsusc.2019.144292
Google Scholar
[41]
J. Guo, Y. Yoon, Y. Ouyang: Gate Electrostatics and Quantum Capacitance of GNRs, Nano Lett. Vol. 7 (2007) p.1935(1940).
DOI: 10.1021/nl0706190
Google Scholar
[42]
A. Rahman, M. S. Lundstrom: A compact scattering model for the nanoscale double-gate MOSFET, IEEE Trans. Electron Devices. Vol. 49 (2002), p.481489.
DOI: 10.1109/16.987120
Google Scholar
[43]
A. Dinarvand: Role of biasing and device size on phonon scattering in graphene nanoribbon transistors, IEEE Trans. Electron Devices, Vol. 65 (2018), p.26542659.
DOI: 10.1109/ted.2018.2825418
Google Scholar
[44]
A. Dinarvand, M. Balarastaghi, M. Amini: Impact of phonon scattering on digital characteristics and RF performance of graphene nanoribbon FETs, Superlattices and Microstructures Vol. 128 (2019), pp.365-372.
DOI: 10.1016/j.spmi.2019.02.013
Google Scholar
[45]
N. D. Akhavan et. al: Phonon limited transport in GNR FETs using full three dimensional quantum mechanical simulation, J. Appl. Phys. Vol. 112 (2012), p.094505.
DOI: 10.1063/1.4764318
Google Scholar
[46]
M.Bresciani, P. Palestri, D. Esseniand L. Selmi: Simple and efficient modeling of the Ek relationship and low-field mobilityin Graphene Nano-Ribbons, Solid State Electron. Vol. 54 (2010), p.10151021.
DOI: 10.1016/j.sse.2010.04.038
Google Scholar
[47]
M. Poljak, K. L. Wangb, T. Suligoj: Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons, Solid State Electron. Vol. 108 (2015) pp.67-74.
DOI: 10.1016/j.sse.2014.12.012
Google Scholar
[48]
J. Wang, R. Zhao, M. Yang, Z. Liu: Inverse relationship between carrier mobility and bandgap in graphene, J. Chem. Phys. Vol. 138 (2013), p.084701.
DOI: 10.1063/1.4792142
Google Scholar
[49]
J. Chauhan, J. Guo: Assessment of high-frequency performance limits of graphene FieldEffect Transistors, Nano Res. Vol. 4 (2011), pp.571-579.
DOI: 10.1007/s12274-011-0113-1
Google Scholar
[50]
J. Zheng et. al: Sub-10 nm gate length graphene transistors: Operating at terahertz frequencies with current saturation, Sci. Rep. Vol. 3 (2013), p.1314.
DOI: 10.1038/srep01314
Google Scholar
[51]
Y. M. Banadaki, A. Srivastava: Scaling effects on static metrics and switching attributes of GNR FET for emerging technology, IEEE Trans. Emerg. Topics Comput. Vol. 3 (2015), p.458469.
DOI: 10.1109/tetc.2015.2445104
Google Scholar
[52]
International Technology Roadmap for Semiconductor Reports. [Online]. Available: http://www.itrs2.net/reports.html.
Google Scholar