Strain Engineering of Graphene Nanoribbon Transistors Made Using Analytical Quasi-Ballistic Transport Model

Article Preview

Abstract:

In this work, the impact of uniaxial strain on the current-voltage characteristics and the key performance metrics of armchair graphene nanoribbon (AGNR) field-effect transistors (FETs) are thoroughly studied by means of an analytical quasi-ballistic transport model that incorporates the effects of hydrogen passivation and third nearest-neighbor interactions. The model leads to compact expressions for the current-voltage characteristics of the device with only two fitting parameters and is verified by atomistic quantum simulations. The values of these parameters should be changed fromdevice to device. The obtained results reveal the tunable nature of the performance metrics of AGNRFETs with the application of tensile strain. Gate capacitance, cutoff frequency, on/off drain-current ratio, intrinsic delay and power-delay product under strain applied to the three distinct families ofAGNRs, are evaluated. This study can offer useful insight and guidance for strain engineering of GNR-based FETs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-135

Citation:

Online since:

October 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Schwierz: Graphene transistors: Status, prospects, and problems, Proc. IEEE. Vol.101 (2013), p.1567􀀀1584.

DOI: 10.1109/jproc.2013.2257633

Google Scholar

[2] N. Harada, S. Sato, N. Yokoyama, Theoretical Investigation of Graphene Nanoribbon Field- Effect Transistors Designed for Digital Applications, Jpn. J. Appl. Phys. Vol.52 (2013), p.094301.

DOI: 10.7567/jjap.52.094301

Google Scholar

[3] Y.W. Son, M. Cohen, Louie S. Energy gaps in graphene nanoribbons, Phys. Rev. Lett. Vol.97 (2006), art. 216803.

DOI: 10.1103/physrevlett.98.089901

Google Scholar

[4] W. X. Wang, M. Zhou, X. Li, Li Si-Yu, X. Wu, W. Duan, Lin He: Energy gaps of atomically precise armchair graphene sidewall nanoribbons, Phys. Rev. Vol. B93 (2016), p.241403(R).

DOI: 10.1103/physrevb.93.241403

Google Scholar

[5] Y. C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. Fischer, M. F. Crommie 2013 Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano. Vol. B7 (2013) p.6123􀀀6128.

DOI: 10.1021/nn401948e

Google Scholar

[6] L. Talirz, P. Ruffieux, R. Fasel: On-surface synthesis of atomically precise graphene nanoribbons, Adv. Mater. Vol. 28 (2016), p.6222􀀀6231.

DOI: 10.1002/adma.201505738

Google Scholar

[7] P. Nemes-Inczea, L. Tapasztoa, G. Z. Magdaa, Z. Osvatha, G. Dobrika, X. Jinb, C. Hwangb, L. P. Biroa: Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates, Appl. Surf. Sci. Vol. 291 (2014), p.48􀀀52.

DOI: 10.1016/j.apsusc.2013.11.012

Google Scholar

[8] G.C. Liang, N. Neophytou, M. S. Lundstrom, D.E. Nikonov: Ballistic graphene nanoribbon metal-oxide-semiconductor fieldeffect transistors: a full real-space quantum transport simulation, J. Appl. Phys. Vol. 102 (2007) p.054307.

DOI: 10.1063/1.2775917

Google Scholar

[9] Y. Ouyang, Y. Yoon, J. K. Fodor, J. Guo: Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors, Appl. Phys. Lett. Vol. 89 (2006) 203107.

DOI: 10.1063/1.2387876

Google Scholar

[10] G. Liang, N. Neophytou, M. Lundstrom, D. Nikonov: Computational study of double-gate graphene nanoribbon transistors, J. Comput. Electron. Vol. 7(3) (2008), p.394􀀀397.

DOI: 10.1007/s10825-008-0243-1

Google Scholar

[11] A. Y. Goharrizi, M. Pourfath, M. Fathipour M. and H. Kosina: Device Performance of Graphene Nanoribbon Field-Effect Transistors in the Presence of Line-Edge Roughness, IEEE Trans. Electron Devices. Vol. 59 (2012), p.3527􀀀3532.

DOI: 10.1109/ted.2012.2218817

Google Scholar

[12] Chin Sai-Kong, Lam Kai-Tak, Seah Dawei Seah et al.: Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding p-bond model, Nanoscale Res. Lett. Vol. 7 (2012), p.114.

DOI: 10.1186/1556-276x-7-114

Google Scholar

[13] Y. M. Banadaki and A. Srivastava: Investigation of the width-dependent static characteristics of graphene nanoribbon field-effect transistors, Solid-State Electronics Vol.111 (2015), p.80􀀀90.

DOI: 10.1016/j.sse.2015.05.003

Google Scholar

[14] B. Rawat, R. Paily: Performance projection of bilayer graphene nanoribbon FET through quantum mechanical simulation, Semiconductor Sci. Technol. Vol. 31(12) (2016), p.125004.

DOI: 10.1088/0268-1242/31/12/125004

Google Scholar

[15] K. L.Wong, M.W. Chuan, A. Hamzah, S. Rusli, N. E. Alias, S. M. Sultan, C. S. Lim and M.L.P. Tan 2020 Carrier transport of rough-edged doped GNRFETs with metal contacts at various channel widths, Superlattices and Microstructures Vol. 143 (2020), p.106548.

DOI: 10.1016/j.spmi.2020.106548

Google Scholar

[16] G. S. Kliros: Gate capacitance modeling and width - dependent performance of graphene nanoribbon transistors, Microelectron. Eng. Vol. 112 (2013), p.220􀀀226.

DOI: 10.1016/j.mee.2013.04.011

Google Scholar

[17] G. Hu, S. Hu, R. Liu, L. Wang, X. Zhou, and T.-A. Tang: Quasiballistic transport model for graphene field-effect transistor, IEEE Trans. Electron Devices. Vol. 60 (2013), p.2410􀀀2414.

DOI: 10.1109/ted.2013.2264094

Google Scholar

[18] V.M. Pereira, A.H. Castro Neto : Strain Engineering of Graphene's Electronic Structure, Phys. Rev. Lett. Vol. 103 (2009), p.046801.

Google Scholar

[19] C. Chen W.K. Tak, L.G. Hong, M. Gong, B. Zhang, Y. Lu, A. L. Antaris, S. Diao, J. Guo and H. Dai: Graphene Nanoribbons under Mechanical Strain, Adv. Mater. Vol. 27 (2015). p.303􀀀309.

DOI: 10.1002/adma.201403750

Google Scholar

[20] Z. Liao, L. M. Sandonas, T. Zhang, M. Gall, A. Dianat, R. Gutierrez, U. Muhle, J. Gluch, R. Jordan, G. Cuniberti, E. Zschech: In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope, Sci. Rep. Vol. 7 (2017), p.211.

DOI: 10.1038/s41598-017-00227-3

Google Scholar

[21] Lv Yawei, Ye Shizhuo, Hao Wang, He Jin, Huang Qijun, Sheng Chang: Strain engineering of chevron graphene nanoribbons, J.Appl. Phys. Vol. 125 (2019), p.082501.

DOI: 10.1063/1.5048527

Google Scholar

[22] V. H. Nguyen, Y. M. Niquet, P. Dollfus: Gate-controllable negative differential conductance in graphene tunneling transistors, Semicond. Sci. Technol. Vol. 27 (2012), p.105018.

DOI: 10.1088/0268-1242/27/10/105018

Google Scholar

[23] M. Zoghi, A. Y. Goharrizi: Strain-induced armchair graphene nanoribbon resonant-tunneling diodes, IEEE Trans. Electron Devices. Vol. 64 (2017), p.4322􀀀4326.

DOI: 10.1109/ted.2017.2738838

Google Scholar

[24] M. Zoghi, M. Z. Kabir: Effects of uniaxial strain on the performance of armchair graphene nanoribbon resonant-tunneling diodes, Semicond. Sci. Technol, Vol. 34 (2019), p.055012.

DOI: 10.1088/1361-6641/ab0efc

Google Scholar

[25] A. Y. Goharrizi: Resonant Tunneling Diode by Means of Compound Armchair Boron-Nitride and Graphene Nanoribbons, Journal of Electronic Materials, Vol. 48(2) (2019), p.1235􀀀1242.

DOI: 10.1007/s11664-018-6818-0

Google Scholar

[26] Y. Lu, J. Guo: Band Gap of Strained Graphene Nanoribbons, Nano Res. Vol. 3 (2010), p.189􀀀199.

DOI: 10.1007/s12274-010-1022-4

Google Scholar

[27] Y. Li, X. Jiang, Z. Liu, Zh Liu: Strain effects in graphene and graphene nanoribbons: the underlying mechanism, Nano Res. Vol. 3 (2010), p.545􀀀556.

DOI: 10.1007/s12274-010-0015-7

Google Scholar

[28] X. H. Peng, S. Velasquez: Strain modulated band gap of edge passivated armchair graphene nanoribbons, Appl. Phys. Lett. Vol. 98 (2011), p.023112.

DOI: 10.1063/1.3536481

Google Scholar

[29] F. Ma, Z. Guo, K. Xu, P.K. Chu: First-principle study of energy band structure of armchair graphene nanoribbons, Solid State Commun. Vol. 152 (2012), p.1089􀀀1093.

DOI: 10.1016/j.ssc.2012.04.058

Google Scholar

[30] K. Alam: Uniaxial strain effects on the performance of a ballistic top gate graphene nanoribbon on insulator transistor, IEEE Trans. Nanotechnol. Vol. 8 (2009), p.528􀀀534.

DOI: 10.1109/tnano.2008.2011811

Google Scholar

[31] N. R. Moslemi, Sheikhi, K. Saghafi and M. K. Moravvej-Farshi: Electronic properties of a dual-gated GNR-FET under uniaxial tensile strain, Microelectron. Reliab. Vol. 52 (2012), p.2579􀀀2584.

DOI: 10.1016/j.microrel.2012.05.009

Google Scholar

[32] G. S. Kliros: Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field effect transistors, Nanoscale Res. Lett. Vol. 9:65 (2014), p.1􀀀11.

DOI: 10.1186/1556-276x-9-65

Google Scholar

[33] N. Sano: Kinetics of Quasiballistic Transport in Nanoscale Semiconductor Structures: Is the Ballistic Limit Attainable at Room Temperature?, Phys. Rev. Lett. Vol. 93 (2004), p.246803.

DOI: 10.1103/physrevlett.93.246803

Google Scholar

[34] G. S. Kliros: Study of Strain Effects on Graphene Nanoribbon FETs Using Quasi-ballistic Transport Model, Proc. IEEE 18th Int. Conf. Nanotechnol. (IEEE-NANO), Cork, Ireland (2018) p.429􀀀425.

DOI: 10.1109/nano.2018.8626283

Google Scholar

[35] G. S. Kliros: Scaling effects in the gate capacitance of graphene nanoribbon transistors, Proc. of IEEE Int. Semiconductor Conf. (CAS), Sinaia, Romania, (2012) p.83􀀀86.

DOI: 10.1109/smicnd.2012.6400691

Google Scholar

[36] D. Gunlycke, C.T. White: Tight􀀀binding energy dispersions of armchair-edge graphene nanostrips, Phys. Rev. B. Vol. 77 (2008) p.115116.

DOI: 10.1103/physrevb.77.115116

Google Scholar

[37] W. A. Harrison: Tight-binding methods, Surf. Sci. Vol. 299 (1994), p.298􀀀310.

Google Scholar

[38] O.L. Blakslee, D.G. Proctor, E.J. Seldin et al: Elastic Constants of Compression-Annealed Pyrolytic Graphite, J. Appl.Phys. Vol. 41 (1970), 3373􀀀3382.

DOI: 10.1063/1.1659428

Google Scholar

[39] R. Grassi, S. Poli S, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani: Tight binding and effective mass modeling of armchair graphene nanoribbon FETs, Solid State Electron. Vol. 53(4) (2009), p.462􀀀467.

DOI: 10.1016/j.sse.2008.07.015

Google Scholar

[40] G. S. Kliros: Strain effects on the quantum capacitance of graphene nanoribbon devices, Appl. Surf. Sci. Vol. 502 (2020) 144292.

DOI: 10.1016/j.apsusc.2019.144292

Google Scholar

[41] J. Guo, Y. Yoon, Y. Ouyang: Gate Electrostatics and Quantum Capacitance of GNRs, Nano Lett. Vol. 7 (2007) p.1935􀀀(1940).

DOI: 10.1021/nl0706190

Google Scholar

[42] A. Rahman, M. S. Lundstrom: A compact scattering model for the nanoscale double-gate MOSFET, IEEE Trans. Electron Devices. Vol. 49 (2002), p.481􀀀489.

DOI: 10.1109/16.987120

Google Scholar

[43] A. Dinarvand: Role of biasing and device size on phonon scattering in graphene nanoribbon transistors, IEEE Trans. Electron Devices, Vol. 65 (2018), p.2654􀀀2659.

DOI: 10.1109/ted.2018.2825418

Google Scholar

[44] A. Dinarvand, M. Balarastaghi, M. Amini: Impact of phonon scattering on digital characteristics and RF performance of graphene nanoribbon FETs, Superlattices and Microstructures Vol. 128 (2019), pp.365-372.

DOI: 10.1016/j.spmi.2019.02.013

Google Scholar

[45] N. D. Akhavan et. al: Phonon limited transport in GNR FETs using full three dimensional quantum mechanical simulation, J. Appl. Phys. Vol. 112 (2012), p.094505.

DOI: 10.1063/1.4764318

Google Scholar

[46] M.Bresciani, P. Palestri, D. Esseniand L. Selmi: Simple and efficient modeling of the Ek relationship and low-field mobilityin Graphene Nano-Ribbons, Solid State Electron. Vol. 54 (2010), p.1015􀀀1021.

DOI: 10.1016/j.sse.2010.04.038

Google Scholar

[47] M. Poljak, K. L. Wangb, T. Suligoj: Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons, Solid State Electron. Vol. 108 (2015) pp.67-74.

DOI: 10.1016/j.sse.2014.12.012

Google Scholar

[48] J. Wang, R. Zhao, M. Yang, Z. Liu: Inverse relationship between carrier mobility and bandgap in graphene, J. Chem. Phys. Vol. 138 (2013), p.084701.

DOI: 10.1063/1.4792142

Google Scholar

[49] J. Chauhan, J. Guo: Assessment of high-frequency performance limits of graphene Field􀀀Effect Transistors, Nano Res. Vol. 4 (2011), pp.571-579.

DOI: 10.1007/s12274-011-0113-1

Google Scholar

[50] J. Zheng et. al: Sub-10 nm gate length graphene transistors: Operating at terahertz frequencies with current saturation, Sci. Rep. Vol. 3 (2013), p.1314.

DOI: 10.1038/srep01314

Google Scholar

[51] Y. M. Banadaki, A. Srivastava: Scaling effects on static metrics and switching attributes of GNR FET for emerging technology, IEEE Trans. Emerg. Topics Comput. Vol. 3 (2015), p.458􀀀469.

DOI: 10.1109/tetc.2015.2445104

Google Scholar

[52] International Technology Roadmap for Semiconductor Reports. [Online]. Available: http://www.itrs2.net/reports.html.

Google Scholar