[1]
I. Fratoddi, Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives, Nanomaterials. 8 (2018) 11. https://doi.org/10.3390/nano8010011.
DOI: 10.3390/nano8010011
Google Scholar
[2]
F. J. Heiligtag, M. Niederberger, The fascinating world of nanoparticle research, Materials Today. 16 (2013) 7-8, 262–271. https://doi.org/10.1016/j.mattod.2013.07.004.
DOI: 10.1016/j.mattod.2013.07.004
Google Scholar
[3]
K. DeFrates, T. Markiewicz, P. Gallo, A. Rack, A. Weyhmiller, B. Jarmusik and X. Hu, Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications, International Journal of Molecular Sciences. 19 (2018) 6, 1717. https://doi.org/10.3390/ijms19061717.
DOI: 10.3390/ijms19061717
Google Scholar
[4]
H. Bessar, I. Venditti, L. Benassi, C. Vaschieri, P. Azzoni, G. Pellacani, C. Magnoni, E. Botti, V. Casagrande, M. Federici, A. Costanzo, L. Fontana, G. Testa, F. Mostafa, S. Ibrahim, M. Russo, I. Fratoddi, Functionalized gold nanoparticles for topical delivery of Methotrexate for the possible treatment of psoriasis, Colloids and Surfaces B: Biointerfaces. 141 (2016), 141–147. https://doi.org/10.1016/j.colsurfb.2016.01.021.
DOI: 10.1016/j.colsurfb.2016.01.021
Google Scholar
[5]
S. J. Park, Protein–Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles, International Journal of Nanomedicine. 15 (2020), 5783–5802. https://doi.org/10.2147/IJN.S254808.
DOI: 10.2147/ijn.s254808
Google Scholar
[6]
K. Güçlü, M. Özyürek, N. Güngör, S. Baki and R. Apak, Selective optical sensing of biothiols with Ellman's reagent: 5,5'-Dithio-bis(2-nitrobenzoic acid)-modified gold nanoparticles, Analytica Chimica Acta. 794 (2013), 90–98. https://doi.org/10.1016/j.aca.2013.07.041.
DOI: 10.1016/j.aca.2013.07.041
Google Scholar
[7]
B. D. Deshpande, P. S. Agrawal, M. K. N. Yenkie, Nanoparticles aided AOP for degradation of p-nitro benzoic acid, Materials Today: Proceedings. 32 (2020), 519–523. https://doi.org/10.1016/j.matpr.2020.02.924.
DOI: 10.1016/j.matpr.2020.02.924
Google Scholar
[8]
A. S. Andreani, E. S. Kunarti, S. J. Santotosa, Synthesis of Gold Nanoparticles Capped-Benzoic Acid Derivative Compounds (o-, m-, and p-Hydroxybenzoic Acid), Indonesian Journal of Chemistry. 19 (2019), 376–385. https://doi.org/10.22146/ijc.34440.
DOI: 10.22146/ijc.34440
Google Scholar
[9]
X. Zhou, S. Ni, X. Zhang, X. Wang, X. Hu, Y. Zhou, Controlling Shape and Size of TiO2 Nanoparticles with Sodium Acetate, Current Nanoscience. 4 (2008) 4, 397–401. https://doi.org/10.2174/157341308786306125.
DOI: 10.2174/157341308786306125
Google Scholar
[10]
A.N. Ngo, M.J. Ezoulin , J.B. Murowchick, A.D. Gounev, B.B.C Youan, Sodium Acetate Coated Tenofovir-Loaded Chitosan Nanoparticles for Improved Physico-Chemical Properties, Pharmaceutical research. 33 (2016), 367–383. https://doi.org/10.1007/s11095-015-1795-y.
DOI: 10.1007/s11095-015-1795-y
Google Scholar
[11]
M.M. Gottesman, T. Fojo, S. E. Bates, Multidrug resistance in cancer: role of ATP–dependent transporters, Nature Reviews Cancer. 2 (2002), 2:48–58. https://doi.org/10.1038/nrc706.
DOI: 10.1038/nrc706
Google Scholar
[12]
Y. Ju-Nam, W. Abdussalam-Mohammed, J.J. Ojeda, Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO, Faraday Discussions. 186 (2016), 77–93. https://doi.org/10.1039/C5FD00131E.
DOI: 10.1039/c5fd00131e
Google Scholar
[13]
S. Diegolia, A. L. Manciuleab, S. Beguma, I. P. Jonesc, J. Lead, J. A, Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules, Science of The Total Environment. 402 (2008), 51–61. https://doi.org/10.1016/j.scitotenv.2008.04.023.
DOI: 10.1016/j.scitotenv.2008.04.023
Google Scholar
[14]
R. A. Sperling, P.R. Gil , F. Zhang, M. Zanella, W. Parak, Biological applications of gold nanoparticles, Chemical Society Reviews. 37 (2008), 1896–1908. https://doi.org/10.1039/B712170A.
DOI: 10.1039/b712170a
Google Scholar
[15]
W. Abdussalam-Mohammed, Comparison of Chemical and Biological Properties of Metal Nanoparticles (Au, Ag) with Metal Oxide Nanoparticles (ZnO_NPs) and their Applications, Advanced Journal of Chemistry-Section A. 3 (2020), 192–210. https://dx.doi.org/10.33945/SAMI/AJCA.2020.2.8.
DOI: 10.33945/sami/ajca.2020.2.8
Google Scholar
[16]
L. Sanjuan-Navarro, A. Boughbina-Portolés, Y. Moliner-Martinez, P. Campins-Falco, Aqueous Dilution of Noble NPs Bulk Dispersions: Modeling Instability due to Dissolution by AF4 and Stablishing Considerations for Plasmonic Assays, Nanomaterials.10 (2020), 1802. https://doi.org/10.3390/nano10091802. DOI: https://doi.org/10.3390/nano10091802.
DOI: 10.3390/nano10091802
Google Scholar
[17]
I. A. Amar, S. A. Shamsi, R. M. Saheem, A. A. Altawati, M. A. Abdulkarim, M. A. Abdulqadir, I. A. Abdalsamed, Surfactant-Assisted Co-Precipitation Synthesis of Ca-Doped Ceria Nanoparticles for Antibacterial Applications, Advanced Journal of Chemistry-Section A. 4 (2021), 10–21. https://doi.org/10.22034/AJCA.2020.247227.1210.
Google Scholar
[18]
K. Kalishwaralal, V. Deepak, S.R.K. Pandian, M. Kottaisamy, S. BarathManiKanth, B. Kartikeyan, S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei, Colloids and Surfaces B: Biointerfaces. 77 (2010), 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007.
DOI: 10.1016/j.colsurfb.2010.02.007
Google Scholar
[19]
N. Khanyile, R. Krause, S. Vilakazi, N, Torto, Un-functionalized Gold Nanoparticles as a Simple Colorimetric Probe for Sensitive and Selective Detection of Dopamine, South African Journal of Chemistry. 72 (2019), 207–214. http://dx.doi.org/10.17159/0379-4350/2019/v72a27.
DOI: 10.17159/0379-4350/2019/v72a27
Google Scholar
[20]
E. Oh, K. Susumu, R. Goswami, H. Mattoussi, One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities, Langmuir. 26 (2010), 7604–7613. https://doi.org/10.1021/la904438s.
DOI: 10.1021/la904438s
Google Scholar
[21]
A. Jezuita, K. Ejsmont, H. Szatylowicz, Substituent effects of nitro group in cyclic compounds, Structural Chemistry. 32 (2021), 179–203. https://doi.org/10.1007/s11224-020-01612-x.
DOI: 10.1007/s11224-020-01612-x
Google Scholar
[22]
Z. Shen, W. Baker, H. Ye, Y. Li, pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles, Nanoscale. 11 (2019), 7371–7385. https://doi.org/10.1039/C8NR09617A.
DOI: 10.1039/c8nr09617a
Google Scholar
[23]
J. Zhu, W. Li, M. Zhu, W. Zhang, W. Niu, G. Liu, Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor, AIP Advances. 4 (2014). https://doi.org/10.1063/1.4869615.
DOI: 10.1063/1.4869615
Google Scholar
[24]
A. Tripathi, S. Kumari, A. Kumar, Toxicity evaluation of pH dependent stable Achyranthes aspera herbal gold nanoparticles, Applied Nanoscience. 6(1) (2016), pp.61-69. https://doi.org/10.1007/s13204-015-0414-x.
DOI: 10.1007/s13204-015-0414-x
Google Scholar
[25]
I. Fernando, Y. Zhou, Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles, Chemosphere. 216 (2019), pp.297-305. https://doi.org/10.1016/j.chemosphere.2018.10.122.
DOI: 10.1016/j.chemosphere.2018.10.122
Google Scholar
[26]
W. Patungwasa, J. H. Hodak, pH tunable morphology of the gold nanoparticles produced by citrate reduction, Materials Chemistry and Physics. 108 (2008), 45-54. https://doi.org/10.1016/j.matchemphys.2007.09.001.
DOI: 10.1016/j.matchemphys.2007.09.001
Google Scholar
[27]
B. Khodashenas, H. R. Ghorbani, Synthesis of silver nanoparticles with different shapes, Arabian Journal of Chemistry. 12 (2019), 1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014.
DOI: 10.1016/j.arabjc.2014.12.014
Google Scholar
[28]
Y. Shiraishi, H. Tanaka, H. Sakamoto, N. Hayashi, Y. Kofuji, S. Ichikawa, T. Hirai, Synthesis of Au Nanoparticles with Benzoic Acid as Reductant and Surface Stabilizer Promoted Solely by UV Light, Langmuir. 33 (2017), 13797–13804. https://doi.org/10.1021/acs.langmuir.7b03192.
DOI: 10.1021/acs.langmuir.7b03192
Google Scholar
[29]
V. Sambhy, M. M. MacBride, B. R. Peterson, A. Sen, Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials, J. Am. Chem. Soc. 128 (2006), 9798–9808. https://doi.org/10.1021/ja061442z.
DOI: 10.1021/ja061442z
Google Scholar