[1]
A. Bryce, A.D. Hay, I.F. Lane, H. V. Thornton, M. Wootton, C. Costelloe, Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis, BMJ. 352 (2016) i939.
DOI: 10.1136/bmj.i939
Google Scholar
[2]
F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria, Am. J. Infect. Control. 34 (2006) S3–S10.
Google Scholar
[3]
L. Gonzales, E. Joffre, R. Rivera, A. Sjoling, A.-M. Svennerholm, V. Iniguez, Prevalence, seasonality and severity of disease caused by pathogenic Escherichia coli in children with diarrhoea in Bolivia, J. Med. Microbiol. 62 (2013) 1697–1706.
DOI: 10.1099/jmm.0.060798-0
Google Scholar
[4]
A.C. Kreske, K. Bjornsdottir, F. Breidt, H. Hassan, Effects of pH, Dissolved Oxygen, and Ionic Strength on the Survival of Escherichia coli O157:H7 in Organic Acid Solutions†‡, J. Food Prot. 71 (2008) 2404–2409.
DOI: 10.4315/0362-028x-71.12.2404
Google Scholar
[5]
F.D. LOWY, Staphylococcus epidermidis Infections, Ann. Intern. Med. 99 (1983) 834.
DOI: 10.7326/0003-4819-99-6-834
Google Scholar
[6]
L. Zuo, W. Wei, M. Morris, J. Wei, M. Gorbounov, C. Wei, New Technology and Clinical Applications of Nanomedicine, Med. Clin. North Am. 91 (2007) 845–862.
DOI: 10.1016/j.mcna.2007.05.004
Google Scholar
[7]
F. Koohpeima, Z. Jowkar, N. Farpour, M.J. Mokhtari, F. Shafiei, Effect of Silver Nanoparticles, Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles on Microshear Bond Strength to Enamel and Dentin, J. Contemp. Dent. Pract. 19 (2018) 1405–1412.
DOI: 10.5005/jp-journals-10024-2440
Google Scholar
[8]
M.A. Vargas-Reus, K. Memarzadeh, J. Huang, G.G. Ren, R.P. Allaker, Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens, Int. J. Antimicrob. Agents. 40 (2012) 135–139.
DOI: 10.1016/j.ijantimicag.2012.04.012
Google Scholar
[9]
Z. Ranjbar-Navazi, M. Eskandani, M. Johari-Ahar, A. Nemati, H. Akbari, S. Davaran, Y. Omidi, Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy, J. Drug Target. 26 (2018) 267–277.
DOI: 10.1080/1061186x.2017.1365876
Google Scholar
[10]
G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver Nanoparticles as Potential Antibacterial Agents, Molecules. 20 (2015) 8856–8874.
DOI: 10.3390/molecules20058856
Google Scholar
[11]
Y. Yu, B.Y.L. Mok, X.J. Loh, Y.N. Tan, Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications, Adv. Healthc. Mater. 5 (2016) 1844–1859.
DOI: 10.1002/adhm.201600192
Google Scholar
[12]
L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O'Neill, D.W. York, Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli, J. Nanoparticle Res. 12 (2010) 1625–1636.
DOI: 10.1007/s11051-009-9711-1
Google Scholar
[13]
P. Basnet, D. Samanta, T. Inakhunbi Chanu, J. Mukherjee, S. Chatterjee, Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles, SN Appl. Sci. 1 (2019) 633.
DOI: 10.1007/s42452-019-0642-x
Google Scholar
[14]
P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, J. Mukherjee, Removal of cationic water pollutants using PEG stabilized ZnO nanoparticles under solar irradiation, AIP Conf. Proc. 2115 (2019) 10–14.
DOI: 10.1063/1.5113043
Google Scholar
[15]
P. Basnet, D. Samanta, T.I. Chanu, S. Jha, S. Chatterjee, Glycine-A bio-capping agent for the bioinspired synthesis of nano-zinc oxide photocatalyst, J. Mater. Sci. Mater. Electron. 31 (2020) 2949–2966.
DOI: 10.1007/s10854-019-02839-z
Google Scholar
[16]
P. Basnet, T. Inakhunbi Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, J. Photochem. Photobiol. B Biol. 183 (2018) 201–221.
DOI: 10.1016/j.jphotobiol.2018.04.036
Google Scholar
[17]
N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett. 279 (2008) 71–76.
DOI: 10.1111/j.1574-6968.2007.01012.x
Google Scholar
[18]
J. Sawal, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method, J. Chem. Eng. Japan. 28 (1995) 288–293.
DOI: 10.1252/jcej.28.288
Google Scholar
[19]
S. Cortese, B.D. Bernardina, M.-C. Mouren, Attention-Deficit/Hyperactivity Disorder (ADHD) and Binge Eating, Nutr. Rev. 65 (2008) 404–411.
DOI: 10.1111/j.1753-4887.2007.tb00318.x
Google Scholar
[20]
P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Tea-phytochemicals functionalized Ag modified ZnO nanocomposites for visible light driven photocatalytic removal of organic water pollutants, Mater. Res. Express. 6 (2019) 085095.
DOI: 10.1088/2053-1591/ab234e
Google Scholar
[21]
F.A. Qais, A. Shafiq, H.M. Khan, F.M. Husain, R.A. Khan, B. Alenazi, A. Alsalme, I. Ahmad, Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens, Bioinorg. Chem. Appl. 2019 (2019) 1–11.
DOI: 10.1155/2019/4649506
Google Scholar
[22]
H. Soliman, A. Elsayed, A. Dyaa, Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp . strain ATL72 , Egypt. J. Basic Appl. Sci. 5 (2018) 228–233.
DOI: 10.1016/j.ejbas.2018.05.005
Google Scholar
[23]
T.I. Chanu, T. Muthukumar, P.T. Manoharan, Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity, Phys. Chem. Chem. Phys. 16 (2014) 23686–23698.
DOI: 10.1039/c4cp03393k
Google Scholar
[24]
I. Chanu, P. Krishnamurthi, P.T. Manoharan, Effect of Silver on Plasmonic, Photocatalytic, and Cytotoxicity of Gold in AuAgZnO Nanocomposites, J. Phys. Chem. C. 121 (2017) 9077–9088.
DOI: 10.1021/acs.jpcc.7b02232
Google Scholar
[25]
S.M. Lam, J.A. Quek, J.C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity, J. Photochem. Photobiol. A Chem. 353 (2018) 171–184.
DOI: 10.1016/j.jphotochem.2017.11.021
Google Scholar
[26]
A. Phuruangrat, S. Siri, P. Wadbua, S. Thongtem, T. Thongtem, Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers, J. Phys. Chem. Solids. 126 (2019) 170–177.
DOI: 10.1016/j.jpcs.2018.11.007
Google Scholar
[27]
W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities, Nanotechnology. 19 (2008) 445711.
DOI: 10.1088/0957-4484/19/44/445711
Google Scholar
[28]
A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 95 (1995) 735–758.
DOI: 10.1021/cr00035a013
Google Scholar
[29]
X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35 (2001) 2381–2387.
DOI: 10.1021/es001752w
Google Scholar
[30]
P. Basnet, S. Chatterjee, Nanocomposites of ZnO for Water Remediation, in: Compos. Environ. Eng., Wiley, 2019: p.179–233.
Google Scholar
[31]
W. He, H.K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc. 136 (2014) 750–757.
DOI: 10.1021/ja410800y
Google Scholar
[32]
R. Kalaivani, M. Maruthupandy, T. Muneeswaran, A. Hameedha Beevi, M. Anand, C.M. Ramakritinan, A.K. Kumaraguru, Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications, Front. Lab. Med. 2 (2018) 30–35.
DOI: 10.1016/j.flm.2018.04.002
Google Scholar
[33]
X. Lv, J. Weng, Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide, Sci. Rep. 3 (2013) 1–10.
DOI: 10.1038/srep03285
Google Scholar
[34]
F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr. Sect. A Found. Adv. 72 (2016) 385–390.
DOI: 10.1107/s205327331600365x
Google Scholar
[35]
U. Holzwarth, N. Gibson, The Scherrer equation versus the Debye-Scherrer equation,, Nat. Nanotechnol. 6 (2011) 534.
DOI: 10.1038/nnano.2011.145
Google Scholar
[36]
C. Zhang, B.Q. Chen, Z.Y. Li, Y. Xia, Y.G. Chen, Surface Plasmon Resonance in Bimetallic Core-Shell Nanoparticles, J. Phys. Chem. C. 119 (2015) 16836–16845.
DOI: 10.1021/acs.jpcc.5b04232
Google Scholar
[37]
S. Ghosh, V.S. Goudar, K.G. Padmalekha, S. V. Bhat, S.S. Indi, H.N. Vasan, ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism, RSC Adv. 2 (2012) 930–940.
DOI: 10.1039/c1ra00815c
Google Scholar
[38]
M. Fang, J.H. Chen, X.L. Xu, P.H. Yang, H.F. Hildebrand, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests, Int. J. Antimicrob. Agents. 27 (2006) 513–517.
DOI: 10.1016/j.ijantimicag.2006.01.008
Google Scholar
[39]
P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer, Powder Technol. 219 (2012) 158–164.
DOI: 10.1016/j.powtec.2011.12.032
Google Scholar
[40]
Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M. V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Res. 42 (2008) 4591–4602.
DOI: 10.1016/j.watres.2008.08.015
Google Scholar
[41]
W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y. Ben Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biotechnol. 85 (2010) 1115–1122.
DOI: 10.1007/s00253-009-2159-5
Google Scholar
[42]
C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanoparticle Res. 12 (2010) 1531–1551.
DOI: 10.1007/s11051-010-9900-y
Google Scholar
[43]
G. Appierot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial actiwity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct. Mater. 19 (2009) 842–852.
DOI: 10.1002/adfm.200801081
Google Scholar
[44]
A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, EPR study of visible light-induced ros generation by nanoparticles of ZnO, J. Phys. Chem. C. 113 (2009) 15997–16001.
DOI: 10.1021/jp904864g
Google Scholar
[45]
H.J. Klasen, A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver, Burns. 26 (2000) 131–138.
DOI: 10.1016/s0305-4179(99)00116-3
Google Scholar
[46]
K.J. Kim, W.S. Sung, B.K. Suh, S.K. Moon, J.S. Choi, J.G. Kim, D.G. Lee, Antifungal activity and mode of action of silver nano-particles on Candida albicans, BioMetals. 22 (2009) 235–242.
DOI: 10.1007/s10534-008-9159-2
Google Scholar
[47]
I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177–182.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[48]
W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu, Z. Zhang, Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA, Nanotechnology. 20 (2009) 085102.
DOI: 10.1088/0957-4484/20/8/085102
Google Scholar
[49]
M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27 (2009) 76–83.
DOI: 10.1016/j.biotechadv.2008.09.002
Google Scholar
[50]
K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions, Ceram. Int. 36 (2010) 497–506.
DOI: 10.1016/j.ceramint.2009.09.026
Google Scholar
[51]
R. Sonohara, N. Muramatsu, H. Ohshima, T. Kondo, Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements, Biophys. Chem. 55 (1995) 273–277.
DOI: 10.1016/0301-4622(95)00004-h
Google Scholar
[52]
N. Mitik-Dineva, J. Wang, V.K. Truong, P. Stoddart, F. Malherbe, R.J. Crawford, E.P. Ivanova, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness, Curr. Microbiol. 58 (2009) 268–273.
DOI: 10.1007/s00284-008-9320-8
Google Scholar
[53]
S.R. Senthilkumar, T. Sivakumar, Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities, Int. J. Pharm. Pharm. Sci. 6 (2014) 461–465. doi:http://www.ijppsjournal.com/Vol6Issue6/9715.pdf.
Google Scholar
[54]
Z. Vasudeo, B. Sonika, Antimicrobial activity of tea (Camellia sinensis), Biomed. Pharmacol. J. 2 (2009) 173–175.
Google Scholar
[55]
D. Khrystenk, G. Kotovska, R. Novitskij, Metabolic Potential, Respiration Rate and Their Relationship in Offspring of Different Sizes of Marble Trout (Salmo marmoratus Cuvier), Turkish J. Fish. Aquat. Sci. 15 (2015) 609–618.
Google Scholar