Synergistic Effect of Tea-Phytochemicals, Noble Metals and Zno Nano-Photo-Composites for Combating Resistance of Bacterial Growth

Article Preview

Abstract:

The spontaneous progress in scientific bases to combat infections resulting from pathogenic microbial colonies has led to the development of nanomaterials capped with plant phytochemicals that possess exceptional bacterial growth resistance. In this study, the Authors report an economical biogenic synthesis of zinc oxide nanoparticles and its nanocomposites with silver, gold, and silver-gold bimetal to evaluate their antibacterial potency towards bacterial colonies. Further, these nanomaterials were functionalized with tea-phytochemicals for cost-effective synthesis, as a biogenic capping and reducing agent, for modulating the growth kinetics of nanomaterials, and because of their synergy with the nanomaterials in improving their antibacterial property. The identification of the biosynthesized nanomaterials was performed through various microscopic and spectroscopic techniques. The model microbes chosen to undergo this study were Escherichia coli, a gram-negative bacterium, and Staphylococcus aureus, a gram-positive bacterium. Based on the anti-bacterial essay, certain factors, such as the nature of the bacteria and nanomaterials, the production rates of superoxide radicals, etc. determined the extent of microbial growth inhibition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-66

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bryce, A.D. Hay, I.F. Lane, H. V. Thornton, M. Wootton, C. Costelloe, Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis, BMJ. 352 (2016) i939.

DOI: 10.1136/bmj.i939

Google Scholar

[2] F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria, Am. J. Infect. Control. 34 (2006) S3–S10.

Google Scholar

[3] L. Gonzales, E. Joffre, R. Rivera, A. Sjoling, A.-M. Svennerholm, V. Iniguez, Prevalence, seasonality and severity of disease caused by pathogenic Escherichia coli in children with diarrhoea in Bolivia, J. Med. Microbiol. 62 (2013) 1697–1706.

DOI: 10.1099/jmm.0.060798-0

Google Scholar

[4] A.C. Kreske, K. Bjornsdottir, F. Breidt, H. Hassan, Effects of pH, Dissolved Oxygen, and Ionic Strength on the Survival of Escherichia coli O157:H7 in Organic Acid Solutions†‡, J. Food Prot. 71 (2008) 2404–2409.

DOI: 10.4315/0362-028x-71.12.2404

Google Scholar

[5] F.D. LOWY, Staphylococcus epidermidis Infections, Ann. Intern. Med. 99 (1983) 834.

DOI: 10.7326/0003-4819-99-6-834

Google Scholar

[6] L. Zuo, W. Wei, M. Morris, J. Wei, M. Gorbounov, C. Wei, New Technology and Clinical Applications of Nanomedicine, Med. Clin. North Am. 91 (2007) 845–862.

DOI: 10.1016/j.mcna.2007.05.004

Google Scholar

[7] F. Koohpeima, Z. Jowkar, N. Farpour, M.J. Mokhtari, F. Shafiei, Effect of Silver Nanoparticles, Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles on Microshear Bond Strength to Enamel and Dentin, J. Contemp. Dent. Pract. 19 (2018) 1405–1412.

DOI: 10.5005/jp-journals-10024-2440

Google Scholar

[8] M.A. Vargas-Reus, K. Memarzadeh, J. Huang, G.G. Ren, R.P. Allaker, Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens, Int. J. Antimicrob. Agents. 40 (2012) 135–139.

DOI: 10.1016/j.ijantimicag.2012.04.012

Google Scholar

[9] Z. Ranjbar-Navazi, M. Eskandani, M. Johari-Ahar, A. Nemati, H. Akbari, S. Davaran, Y. Omidi, Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy, J. Drug Target. 26 (2018) 267–277.

DOI: 10.1080/1061186x.2017.1365876

Google Scholar

[10] G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver Nanoparticles as Potential Antibacterial Agents, Molecules. 20 (2015) 8856–8874.

DOI: 10.3390/molecules20058856

Google Scholar

[11] Y. Yu, B.Y.L. Mok, X.J. Loh, Y.N. Tan, Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications, Adv. Healthc. Mater. 5 (2016) 1844–1859.

DOI: 10.1002/adhm.201600192

Google Scholar

[12] L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O'Neill, D.W. York, Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli, J. Nanoparticle Res. 12 (2010) 1625–1636.

DOI: 10.1007/s11051-009-9711-1

Google Scholar

[13] P. Basnet, D. Samanta, T. Inakhunbi Chanu, J. Mukherjee, S. Chatterjee, Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles, SN Appl. Sci. 1 (2019) 633.

DOI: 10.1007/s42452-019-0642-x

Google Scholar

[14] P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, J. Mukherjee, Removal of cationic water pollutants using PEG stabilized ZnO nanoparticles under solar irradiation, AIP Conf. Proc. 2115 (2019) 10–14.

DOI: 10.1063/1.5113043

Google Scholar

[15] P. Basnet, D. Samanta, T.I. Chanu, S. Jha, S. Chatterjee, Glycine-A bio-capping agent for the bioinspired synthesis of nano-zinc oxide photocatalyst, J. Mater. Sci. Mater. Electron. 31 (2020) 2949–2966.

DOI: 10.1007/s10854-019-02839-z

Google Scholar

[16] P. Basnet, T. Inakhunbi Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, J. Photochem. Photobiol. B Biol. 183 (2018) 201–221.

DOI: 10.1016/j.jphotobiol.2018.04.036

Google Scholar

[17] N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett. 279 (2008) 71–76.

DOI: 10.1111/j.1574-6968.2007.01012.x

Google Scholar

[18] J. Sawal, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method, J. Chem. Eng. Japan. 28 (1995) 288–293.

DOI: 10.1252/jcej.28.288

Google Scholar

[19] S. Cortese, B.D. Bernardina, M.-C. Mouren, Attention-Deficit/Hyperactivity Disorder (ADHD) and Binge Eating, Nutr. Rev. 65 (2008) 404–411.

DOI: 10.1111/j.1753-4887.2007.tb00318.x

Google Scholar

[20] P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Tea-phytochemicals functionalized Ag modified ZnO nanocomposites for visible light driven photocatalytic removal of organic water pollutants, Mater. Res. Express. 6 (2019) 085095.

DOI: 10.1088/2053-1591/ab234e

Google Scholar

[21] F.A. Qais, A. Shafiq, H.M. Khan, F.M. Husain, R.A. Khan, B. Alenazi, A. Alsalme, I. Ahmad, Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens, Bioinorg. Chem. Appl. 2019 (2019) 1–11.

DOI: 10.1155/2019/4649506

Google Scholar

[22] H. Soliman, A. Elsayed, A. Dyaa, Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp . strain ATL72 , Egypt. J. Basic Appl. Sci. 5 (2018) 228–233.

DOI: 10.1016/j.ejbas.2018.05.005

Google Scholar

[23] T.I. Chanu, T. Muthukumar, P.T. Manoharan, Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity, Phys. Chem. Chem. Phys. 16 (2014) 23686–23698.

DOI: 10.1039/c4cp03393k

Google Scholar

[24] I. Chanu, P. Krishnamurthi, P.T. Manoharan, Effect of Silver on Plasmonic, Photocatalytic, and Cytotoxicity of Gold in AuAgZnO Nanocomposites, J. Phys. Chem. C. 121 (2017) 9077–9088.

DOI: 10.1021/acs.jpcc.7b02232

Google Scholar

[25] S.M. Lam, J.A. Quek, J.C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity, J. Photochem. Photobiol. A Chem. 353 (2018) 171–184.

DOI: 10.1016/j.jphotochem.2017.11.021

Google Scholar

[26] A. Phuruangrat, S. Siri, P. Wadbua, S. Thongtem, T. Thongtem, Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers, J. Phys. Chem. Solids. 126 (2019) 170–177.

DOI: 10.1016/j.jpcs.2018.11.007

Google Scholar

[27] W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities, Nanotechnology. 19 (2008) 445711.

DOI: 10.1088/0957-4484/19/44/445711

Google Scholar

[28] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 95 (1995) 735–758.

DOI: 10.1021/cr00035a013

Google Scholar

[29] X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35 (2001) 2381–2387.

DOI: 10.1021/es001752w

Google Scholar

[30] P. Basnet, S. Chatterjee, Nanocomposites of ZnO for Water Remediation, in: Compos. Environ. Eng., Wiley, 2019: p.179–233.

Google Scholar

[31] W. He, H.K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc. 136 (2014) 750–757.

DOI: 10.1021/ja410800y

Google Scholar

[32] R. Kalaivani, M. Maruthupandy, T. Muneeswaran, A. Hameedha Beevi, M. Anand, C.M. Ramakritinan, A.K. Kumaraguru, Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications, Front. Lab. Med. 2 (2018) 30–35.

DOI: 10.1016/j.flm.2018.04.002

Google Scholar

[33] X. Lv, J. Weng, Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide, Sci. Rep. 3 (2013) 1–10.

DOI: 10.1038/srep03285

Google Scholar

[34] F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr. Sect. A Found. Adv. 72 (2016) 385–390.

DOI: 10.1107/s205327331600365x

Google Scholar

[35] U. Holzwarth, N. Gibson, The Scherrer equation versus the Debye-Scherrer equation,, Nat. Nanotechnol. 6 (2011) 534.

DOI: 10.1038/nnano.2011.145

Google Scholar

[36] C. Zhang, B.Q. Chen, Z.Y. Li, Y. Xia, Y.G. Chen, Surface Plasmon Resonance in Bimetallic Core-Shell Nanoparticles, J. Phys. Chem. C. 119 (2015) 16836–16845.

DOI: 10.1021/acs.jpcc.5b04232

Google Scholar

[37] S. Ghosh, V.S. Goudar, K.G. Padmalekha, S. V. Bhat, S.S. Indi, H.N. Vasan, ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism, RSC Adv. 2 (2012) 930–940.

DOI: 10.1039/c1ra00815c

Google Scholar

[38] M. Fang, J.H. Chen, X.L. Xu, P.H. Yang, H.F. Hildebrand, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests, Int. J. Antimicrob. Agents. 27 (2006) 513–517.

DOI: 10.1016/j.ijantimicag.2006.01.008

Google Scholar

[39] P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer, Powder Technol. 219 (2012) 158–164.

DOI: 10.1016/j.powtec.2011.12.032

Google Scholar

[40] Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M. V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Res. 42 (2008) 4591–4602.

DOI: 10.1016/j.watres.2008.08.015

Google Scholar

[41] W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y. Ben Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biotechnol. 85 (2010) 1115–1122.

DOI: 10.1007/s00253-009-2159-5

Google Scholar

[42] C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanoparticle Res. 12 (2010) 1531–1551.

DOI: 10.1007/s11051-010-9900-y

Google Scholar

[43] G. Appierot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial actiwity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct. Mater. 19 (2009) 842–852.

DOI: 10.1002/adfm.200801081

Google Scholar

[44] A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, EPR study of visible light-induced ros generation by nanoparticles of ZnO, J. Phys. Chem. C. 113 (2009) 15997–16001.

DOI: 10.1021/jp904864g

Google Scholar

[45] H.J. Klasen, A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver, Burns. 26 (2000) 131–138.

DOI: 10.1016/s0305-4179(99)00116-3

Google Scholar

[46] K.J. Kim, W.S. Sung, B.K. Suh, S.K. Moon, J.S. Choi, J.G. Kim, D.G. Lee, Antifungal activity and mode of action of silver nano-particles on Candida albicans, BioMetals. 22 (2009) 235–242.

DOI: 10.1007/s10534-008-9159-2

Google Scholar

[47] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177–182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[48] W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu, Z. Zhang, Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA, Nanotechnology. 20 (2009) 085102.

DOI: 10.1088/0957-4484/20/8/085102

Google Scholar

[49] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27 (2009) 76–83.

DOI: 10.1016/j.biotechadv.2008.09.002

Google Scholar

[50] K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions, Ceram. Int. 36 (2010) 497–506.

DOI: 10.1016/j.ceramint.2009.09.026

Google Scholar

[51] R. Sonohara, N. Muramatsu, H. Ohshima, T. Kondo, Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements, Biophys. Chem. 55 (1995) 273–277.

DOI: 10.1016/0301-4622(95)00004-h

Google Scholar

[52] N. Mitik-Dineva, J. Wang, V.K. Truong, P. Stoddart, F. Malherbe, R.J. Crawford, E.P. Ivanova, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness, Curr. Microbiol. 58 (2009) 268–273.

DOI: 10.1007/s00284-008-9320-8

Google Scholar

[53] S.R. Senthilkumar, T. Sivakumar, Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities, Int. J. Pharm. Pharm. Sci. 6 (2014) 461–465. doi:http://www.ijppsjournal.com/Vol6Issue6/9715.pdf.

Google Scholar

[54] Z. Vasudeo, B. Sonika, Antimicrobial activity of tea (Camellia sinensis), Biomed. Pharmacol. J. 2 (2009) 173–175.

Google Scholar

[55] D. Khrystenk, G. Kotovska, R. Novitskij, Metabolic Potential, Respiration Rate and Their Relationship in Offspring of Different Sizes of Marble Trout (Salmo marmoratus Cuvier), Turkish J. Fish. Aquat. Sci. 15 (2015) 609–618.

Google Scholar