Effect of Nickel Ions Substitution on the Magnetic and Optical Properties of a Nanosized Lithium-Iron Ferrite

Article Preview

Abstract:

This paper reports on the successful synthesis of fine nanoparticles of nickel-substituted lithium-iron ferrites of composition Li0.5-x/2NixFe2.5-x/2O4 (0.2≤ x ≤1.0) by the sol-gel autocombustion method. It has been found that the alternating current (AC) and direct current (DC) conductivity is preferably tuned due to its dependence on temperature and nickel doping. Analysis of the Arrhenius dependences also confirms the appearance of more than one conduction mechanism upon substitution. The predominance of one type of conductivity over another depends on the concentration of the substituting element. Measurement of the magnetic properties has shown that the substitution of Ni2+ can significantly change the saturation and residual magnetization. Samples of composition Li0.4Ni0.2Fe2.4O4 have the highest saturation magnetization (84.08 emu/g), residual magnetization (15.85 emu/g), and the lowest coercive force (0.18 kOe). All the obtained results indicate a significant effect of the substitution of Ni2+ ions on the structure and properties of Li0.5-x/2NixFe2.5-x/2O4 ferrite nanoparticles.Photocatalytic properties have been obtained by the degradation of Methylene Blue dye under illumination with a halogen lamp. It is shown that an increase in the content of nickel ions leads to a change in the type of conductivity: from n-type (unsubstituted lithium pentaferrite) to p-type (with substitution x = 0.8 and higher). These systems are characterized by hopping conduction realized by octa-positions according to the mechanisms Fe3++e-↔Fe2+, and Ni3+↔Ni2++h+. The predominance of one or another mechanism depends on the content of nickel ions. The optical band gap ranges from 1.4 to 2.25 eV. Samples with nickel content x = 0.4 and x = 0.8 have shown the best degradation ability, which is 97% within 160 min for Methylene Blue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-90

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Savithri Vatsalya, V. L., Sundari, G. S., Sridhar, Ch. S. L. N., Prasanna, I. L., & Lakshmi, Ch. S. (2022). Studies on nanocrystalline copper doped Nickel Zinc ferrites for optoelectronic applications. In Journal of Luminescence (Vol. 252, p.119314). Elsevier BV.

DOI: 10.1016/j.jlumin.2022.119314

Google Scholar

[2] Kotsyubynsky, V. O., Mokliak, V. V., Grubiak, A. B., Kolkovsky, P. I., & Zamil, A. S. A. H. (2013). Nanocomposite Materials alfa-Fe2O3/gamma-Fe2O3: Synthesis, Crystal and Magnetic Microstructure, Morphology. Journal of Nano-and Electronic Physics, 5(1), 1024-1.

Google Scholar

[3] Kurian, M., & Thankachan, S. (2021). Structural diversity and applications of spinel ferrite core - Shell nanostructures- A review. In Open Ceramics (Vol. 8, p.100179). Elsevier BV.

DOI: 10.1016/j.oceram.2021.100179

Google Scholar

[4] Rana, G., Dhiman, P., Kumar, A., Vo, D.-V. N., Sharma, G., Sharma, S., & Naushad, Mu. (2021). Recent advances on nickel nano-ferrite: A review on processing techniques, properties, and diverse applications. In Chemical Engineering Research and Design (Vol. 175, p.182–208). Elsevier BV.

DOI: 10.1016/j.cherd.2021.08.040

Google Scholar

[5] Kaykan, L. S., Mazurenko, J. S., Yaremiy, I. P., Bandura, Kh. V., & Ostapovych, N. V. (2019). Effect of Nickel Ions Substitution on the Structural and Electrical Properties of a Nanosized Lithium-iron Ferrite Obtained by the Sol-gel Auto-combustion Method. In Journal of Nano- and Electronic Physics (Vol. 11, Issue 5, pp.05041-05041–05047). Sumy State University.

DOI: 10.21272/jnep.11(5).05041

Google Scholar

[6] Thejas, R., Soundarya, T. L., Nagaraju, G., Swaroop, K., Prashantha, S. C., Veena, M., Melagiriyappa, E., & Naveen, C. S. (2022). Effect of cation concentration on structural, morphology, optical properties of Zinc-Nickel ferrite nanoparticles. In Materials Letters: X (Vol. 15, p.100156). Elsevier BV.

DOI: 10.1016/j.mlblux.2022.100156

Google Scholar

[7] Guo, H.-S., Li, L.-Z., Wang, R., Xiong, Z., Yan, Y.-L., Zhong, Z.-C., & Chang, X. (2022). Cd-substituted NiZnCo ferrite with high dielectric constant and low coercivity for high-frequency electronic devices. In Ceramics International (Vol. 48, Issue 3, p.3609–3614). Elsevier BV.

DOI: 10.1016/j.ceramint.2021.10.141

Google Scholar

[8] Ahmad, M., Shahid, M., Alanazi, Y. M., Rehman, A. ur, Asif, M., & Dunnill, C. W. (2022). Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage devices. In Journal of Materials Research and Technology (Vol. 18, p.3386–3395). Elsevier BV.

DOI: 10.1016/j.jmrt.2022.03.113

Google Scholar

[9] Uhorchuk O.M., Uhorchuk V.V., Karpets M.V., & Hasyuk M.I. (2015). Lithium Ferrite as the Cathode of the Electrochemical Power Sources: the Perspectives of Sol-gel Synthesis Method. Journal of Nano- and Electronic Physics (Vol. 7, Issue 2, pp.02012-02012– 02019).

Google Scholar

[10] Frolova, L., & Sukhyy, K. (2022). The effect of the cation in spinel ferrite MeFe2O4 (Me = Co, Ni, Mn) on the photocatalytic properties in the degradation of methylene blue. In Materials Today: Proceedings (Vol. 62, p.7726–7730). Elsevier BV.

DOI: 10.1016/j.matpr.2022.03.503

Google Scholar

[11] Barani, M., Rahdar, A., Mukhtar, M., Razzaq, S., Qindeel, M., Hosseini Olam, S. A., Paiva-Santos, A. C., Ajalli, N., Sargazi, S., Balakrishnan, D., Gupta, A. K., & Pandey, S. (2022). Recent application of cobalt ferrite nanoparticles as a theranostic agent. In Materials Today Chemistry (Vol. 26, p.101131). Elsevier BV

DOI: 10.1016/j.mtchem.2022.101131

Google Scholar

[12] Ghadage, P., Kodam, P., Nadargi, D., Patil, S., Tamboli, M., Bhandari, N. L., Mulla, I., Park, C., & Suryavanshi, S. (2022). Pd loaded bismuth ferrite: A versatile perovskite for dual applications as acetone gas sensor and photocatalytic dye degradation of malachite green. In Ceramics International. Elsevier BV.

DOI: 10.1016/j.ceramint.2022.10.153

Google Scholar

[13] Reheem, A. M. A., Mahmoud, S. M., Waly, S. A., Elsayed, H. M., & El khabary, H. (2022). Influence of nitrogen ion on radiation shielding properties of Lead Doped Cadmium Ferrite Nanoparticles. In Radiation Physics and Chemistry (Vol. 201, p.110467). Elsevier BV

DOI: 10.1016/j.radphyschem.2022.110467

Google Scholar

[14] Mohan, H., Karthi, N., Muthukumar Sathya, P., Ramalingam, V., Thimmarayan, S., Hossain, M. A., Aravinthan, A., & Shin, T. (2022). (Zn, Ni)-ferrite nanoparticles for promoted osteogenic differentiation of MC3T3-E1 cells. In Journal of Industrial and Engineering Chemistry (Vol. 111, p.454–463). Elsevier BV

DOI: 10.1016/j.jiec.2022.04.026

Google Scholar

[15] Nigam, A., Saini, S., Singh, B., Rai, A. K., & Pawar, S. J. (2022). Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity. In Materials Today Communications (Vol. 31, p.103632). Elsevier BV

DOI: 10.1016/j.mtcomm.2022.103632

Google Scholar

[16] Jarusheh, H. S., Yusuf, A., Banat, F., Haija, M. A., & Palmisano, G. (2022). Integrated photocatalytic technologies in water treatment using ferrites nanoparticles. In Journal of Environmental Chemical Engineering (Vol. 10, Issue 5, p.108204). Elsevier BV

DOI: 10.1016/j.jece.2022.108204

Google Scholar

[17] Wang, J., Zang, L., Wang, L., Tian, Y., Yang, Z., Yue, Y., & Sun, L. (2022). Magnetic cobalt ferrite/reduced graphene oxide (CF/rGO) porous balls for efficient photocatalytic degradation of oxytetracycline. In Journal of Environmental Chemical Engineering (Vol. 10, Issue 5, p.108259). Elsevier BV

DOI: 10.1016/j.jece.2022.108259

Google Scholar

[18] Ostafijchuk, B. K., Bushkova, V. S., Moklyak, V. V., & Ilnitsky, R. V. (2019). Synthesis and Magnetic Microstructure of Nanoparticles of Zinc-Substituted Magnesium Ferrites. Ukrainian Journal of Physics, 60(12), 1234

DOI: 10.15407/ujpe60.12.1234

Google Scholar

[19] Kaykan, L. S., Mazurenko, J. S., Sijo, A. K., & Makovysyn, V. I. (2020). Structural properties of magnesium-substituted lithium ferrites. In Applied Nanoscience (Vol. 10, Issue 8, p.2739–2747). Springer Science and Business Media LLC

DOI: 10.1007/s13204-020-01259-4

Google Scholar

[20] Sharma, H. R., Batoo, K. M., Neffati, R., Dhiman, P., Bhardwaj, S., Sharma, P., Hussain, S., Sharma, I., Goel, R., & Kumar, G. (2022). Investigation of structural, electrical and magnetic properties of MnAlxFe2-xO4 ferrite nanoparticles processed by solution combustion route. In Physica B: Condensed Matter (Vol. 646, p.414368). Elsevier BV

DOI: 10.1016/j.physb.2022.414368

Google Scholar

[21] Ostafiychuk, B. K., Gasyuk, I. M., Kaykan, L. S., Uhorchuk, V. V., Yakubovskiy, P. P., Tsap, V. A., & Kaykan, Yu. S. (2016). Temperature—Frequency Dependences of Dielectric Constants of Magnesium-Substituted Lithium Ferrite. In Metallofizika i Noveishie Tekhnologii (Vol. 36, Issue 1, p.89–102). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

DOI: 10.15407/mfint.36.01.0089

Google Scholar

[22] Parajuli, D., Murali, N., Rao, A. V., Ramakrishna, A., S, Y. M., & Samatha, K. (2022). Structural, dc electrical resistivity and magnetic investigation of Mg, Ni, and Zn substituted Co-Cu nano spinel ferrites. In South African Journal of Chemical Engineering (Vol. 42, p.106–114). Elsevier BV

DOI: 10.1016/j.sajce.2022.07.009

Google Scholar

[23] Kaykan, L. S., Sijo, A. K., Mazurenko, J. S., & Żywczak, A. (2021). Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites. In Applied Nanoscience (Vol. 12, Issue 3, p.503–511). Springer Science and Business Media LLC

DOI: 10.1007/s13204-021-01691-0

Google Scholar

[24] Dhanda, N., Thakur, P., & Thakur, A. (2022). Green synthesis of cobalt ferrite: A study of structural and optical properties. In Materials Today: Proceedings. Elsevier BV

DOI: 10.1016/j.matpr.2022.07.202

Google Scholar

[25] Rosales-González, O., Bolarín-Miró, A. M., Cortes-Escobedo, C. A., Pedro-García, F., Patiño-Pineda, J. A., & Sánchez-De Jesús, F. (2022). Synthesis of a magnetically removable visible-light photocatalyst based on nickel-doped zinc ferrite. In Ceramics International. Elsevier BV

DOI: 10.1016/j.ceramint.2022.10.101

Google Scholar

[26] Heikes, R. R., & Johnston, W. D. (1957). Mechanism of Conduction in Li‐Substituted Transition Metal Oxides. In The Journal of Chemical Physics (Vol. 26, Issue 3, p.582–587). AIP Publishing

DOI: 10.1063/1.1743350

Google Scholar

[27] Mazen, S. A., & Elmosalami, T. A. (2011). Structural and Elastic Properties of Li-Ni Ferrite. In ISRN Condensed Matter Physics (Vol. 2011, p.1–9). Hindawi Limited

DOI: 10.5402/2011/820726

Google Scholar

[28] Šimša, Z. (1967). The influence of Mn3+ ion clustering on electrical properties of manganese ferrites. In Journal of Physics and Chemistry of Solids (Vol. 28, Issue 12, p.2435–2439). Elsevier BV

DOI: 10.1016/0022-3697(67)90030-3

Google Scholar

[29] Viswanathan B., Murthy V. (1990). Ferrite Materials, Science and Technology. Norsa Publishing House.

Google Scholar

[30] Sagar, T. V., Rao, T. S., & Naidu, K. C. B. (2021). AC-electrical conductivity, magnetic susceptibility, dielectric modulus and impedance studies of sol-gel processed nano-NiMgZn ferrites. In Materials Chemistry and Physics (Vol. 258, p.123902). Elsevier BV

DOI: 10.1016/j.matchemphys.2020.123902

Google Scholar

[31] Pike, G. E. (1972). AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity. In Physical Review B (Vol. 6, Issue 4, p.1572–1580). American Physical Society (APS)

DOI: 10.1103/physrevb.6.1572

Google Scholar

[32] Mazen, S. A., Dawoud, H. A., & Abu-Elsaad, N. I. (2017). Thermoelectric power and DC conductivity of Li-Cu ferrite. In Journal of Magnetism and Magnetic Materials (Vol. 428, p.119–124). Elsevier BV

DOI: 10.1016/j.jmmm.2016.12.029

Google Scholar

[33] Jiang, J., Yang, Y.-M., & Li, L.-C. (2008). Effect of heat treatment on the magnetic properties of nanocrystalline spinel Li–Ni ferrite prepared by a simple soft chemistry route. In Journal of Alloys and Compounds (Vol. 464, Issues 1–2, p.370–373). Elsevier BV

DOI: 10.1016/j.jallcom.2007.09.128

Google Scholar

[34] Manzoor, A., Khan, M. A., Shahzad, A., Al-Muhimeed, T. I., AlObaid, A. A., Albalawi, H., Afzal, A. M., Kashif, M., Tahir, S., & Munir, T. (2021). Influence of B-site cations ordering on magnetization and dielectric relaxations in Li–Ni spinel ferrites. In Ceramics International (Vol. 47, Issue 16, p.22662–22668). Elsevier BV

DOI: 10.1016/j.ceramint.2021.04.280

Google Scholar

[35] Kumar, N., Singh, R. K., & Singh, P. R. (2021). Structural, optical, and magnetic properties of Pr substituted Li–Ni Ferrites prepared by citrate -precursor method. In Journal of Materials Science: Materials in Electronics (Vol. 32, Issue 8, p.9886–9902). Springer Science and Business Media LLC

DOI: 10.1007/s10854-021-05647-6

Google Scholar