[1]
Savithri Vatsalya, V. L., Sundari, G. S., Sridhar, Ch. S. L. N., Prasanna, I. L., & Lakshmi, Ch. S. (2022). Studies on nanocrystalline copper doped Nickel Zinc ferrites for optoelectronic applications. In Journal of Luminescence (Vol. 252, p.119314). Elsevier BV.
DOI: 10.1016/j.jlumin.2022.119314
Google Scholar
[2]
Kotsyubynsky, V. O., Mokliak, V. V., Grubiak, A. B., Kolkovsky, P. I., & Zamil, A. S. A. H. (2013). Nanocomposite Materials alfa-Fe2O3/gamma-Fe2O3: Synthesis, Crystal and Magnetic Microstructure, Morphology. Journal of Nano-and Electronic Physics, 5(1), 1024-1.
Google Scholar
[3]
Kurian, M., & Thankachan, S. (2021). Structural diversity and applications of spinel ferrite core - Shell nanostructures- A review. In Open Ceramics (Vol. 8, p.100179). Elsevier BV.
DOI: 10.1016/j.oceram.2021.100179
Google Scholar
[4]
Rana, G., Dhiman, P., Kumar, A., Vo, D.-V. N., Sharma, G., Sharma, S., & Naushad, Mu. (2021). Recent advances on nickel nano-ferrite: A review on processing techniques, properties, and diverse applications. In Chemical Engineering Research and Design (Vol. 175, p.182–208). Elsevier BV.
DOI: 10.1016/j.cherd.2021.08.040
Google Scholar
[5]
Kaykan, L. S., Mazurenko, J. S., Yaremiy, I. P., Bandura, Kh. V., & Ostapovych, N. V. (2019). Effect of Nickel Ions Substitution on the Structural and Electrical Properties of a Nanosized Lithium-iron Ferrite Obtained by the Sol-gel Auto-combustion Method. In Journal of Nano- and Electronic Physics (Vol. 11, Issue 5, pp.05041-05041–05047). Sumy State University.
DOI: 10.21272/jnep.11(5).05041
Google Scholar
[6]
Thejas, R., Soundarya, T. L., Nagaraju, G., Swaroop, K., Prashantha, S. C., Veena, M., Melagiriyappa, E., & Naveen, C. S. (2022). Effect of cation concentration on structural, morphology, optical properties of Zinc-Nickel ferrite nanoparticles. In Materials Letters: X (Vol. 15, p.100156). Elsevier BV.
DOI: 10.1016/j.mlblux.2022.100156
Google Scholar
[7]
Guo, H.-S., Li, L.-Z., Wang, R., Xiong, Z., Yan, Y.-L., Zhong, Z.-C., & Chang, X. (2022). Cd-substituted NiZnCo ferrite with high dielectric constant and low coercivity for high-frequency electronic devices. In Ceramics International (Vol. 48, Issue 3, p.3609–3614). Elsevier BV.
DOI: 10.1016/j.ceramint.2021.10.141
Google Scholar
[8]
Ahmad, M., Shahid, M., Alanazi, Y. M., Rehman, A. ur, Asif, M., & Dunnill, C. W. (2022). Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage devices. In Journal of Materials Research and Technology (Vol. 18, p.3386–3395). Elsevier BV.
DOI: 10.1016/j.jmrt.2022.03.113
Google Scholar
[9]
Uhorchuk O.M., Uhorchuk V.V., Karpets M.V., & Hasyuk M.I. (2015). Lithium Ferrite as the Cathode of the Electrochemical Power Sources: the Perspectives of Sol-gel Synthesis Method. Journal of Nano- and Electronic Physics (Vol. 7, Issue 2, pp.02012-02012– 02019).
Google Scholar
[10]
Frolova, L., & Sukhyy, K. (2022). The effect of the cation in spinel ferrite MeFe2O4 (Me = Co, Ni, Mn) on the photocatalytic properties in the degradation of methylene blue. In Materials Today: Proceedings (Vol. 62, p.7726–7730). Elsevier BV.
DOI: 10.1016/j.matpr.2022.03.503
Google Scholar
[11]
Barani, M., Rahdar, A., Mukhtar, M., Razzaq, S., Qindeel, M., Hosseini Olam, S. A., Paiva-Santos, A. C., Ajalli, N., Sargazi, S., Balakrishnan, D., Gupta, A. K., & Pandey, S. (2022). Recent application of cobalt ferrite nanoparticles as a theranostic agent. In Materials Today Chemistry (Vol. 26, p.101131). Elsevier BV
DOI: 10.1016/j.mtchem.2022.101131
Google Scholar
[12]
Ghadage, P., Kodam, P., Nadargi, D., Patil, S., Tamboli, M., Bhandari, N. L., Mulla, I., Park, C., & Suryavanshi, S. (2022). Pd loaded bismuth ferrite: A versatile perovskite for dual applications as acetone gas sensor and photocatalytic dye degradation of malachite green. In Ceramics International. Elsevier BV.
DOI: 10.1016/j.ceramint.2022.10.153
Google Scholar
[13]
Reheem, A. M. A., Mahmoud, S. M., Waly, S. A., Elsayed, H. M., & El khabary, H. (2022). Influence of nitrogen ion on radiation shielding properties of Lead Doped Cadmium Ferrite Nanoparticles. In Radiation Physics and Chemistry (Vol. 201, p.110467). Elsevier BV
DOI: 10.1016/j.radphyschem.2022.110467
Google Scholar
[14]
Mohan, H., Karthi, N., Muthukumar Sathya, P., Ramalingam, V., Thimmarayan, S., Hossain, M. A., Aravinthan, A., & Shin, T. (2022). (Zn, Ni)-ferrite nanoparticles for promoted osteogenic differentiation of MC3T3-E1 cells. In Journal of Industrial and Engineering Chemistry (Vol. 111, p.454–463). Elsevier BV
DOI: 10.1016/j.jiec.2022.04.026
Google Scholar
[15]
Nigam, A., Saini, S., Singh, B., Rai, A. K., & Pawar, S. J. (2022). Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity. In Materials Today Communications (Vol. 31, p.103632). Elsevier BV
DOI: 10.1016/j.mtcomm.2022.103632
Google Scholar
[16]
Jarusheh, H. S., Yusuf, A., Banat, F., Haija, M. A., & Palmisano, G. (2022). Integrated photocatalytic technologies in water treatment using ferrites nanoparticles. In Journal of Environmental Chemical Engineering (Vol. 10, Issue 5, p.108204). Elsevier BV
DOI: 10.1016/j.jece.2022.108204
Google Scholar
[17]
Wang, J., Zang, L., Wang, L., Tian, Y., Yang, Z., Yue, Y., & Sun, L. (2022). Magnetic cobalt ferrite/reduced graphene oxide (CF/rGO) porous balls for efficient photocatalytic degradation of oxytetracycline. In Journal of Environmental Chemical Engineering (Vol. 10, Issue 5, p.108259). Elsevier BV
DOI: 10.1016/j.jece.2022.108259
Google Scholar
[18]
Ostafijchuk, B. K., Bushkova, V. S., Moklyak, V. V., & Ilnitsky, R. V. (2019). Synthesis and Magnetic Microstructure of Nanoparticles of Zinc-Substituted Magnesium Ferrites. Ukrainian Journal of Physics, 60(12), 1234
DOI: 10.15407/ujpe60.12.1234
Google Scholar
[19]
Kaykan, L. S., Mazurenko, J. S., Sijo, A. K., & Makovysyn, V. I. (2020). Structural properties of magnesium-substituted lithium ferrites. In Applied Nanoscience (Vol. 10, Issue 8, p.2739–2747). Springer Science and Business Media LLC
DOI: 10.1007/s13204-020-01259-4
Google Scholar
[20]
Sharma, H. R., Batoo, K. M., Neffati, R., Dhiman, P., Bhardwaj, S., Sharma, P., Hussain, S., Sharma, I., Goel, R., & Kumar, G. (2022). Investigation of structural, electrical and magnetic properties of MnAlxFe2-xO4 ferrite nanoparticles processed by solution combustion route. In Physica B: Condensed Matter (Vol. 646, p.414368). Elsevier BV
DOI: 10.1016/j.physb.2022.414368
Google Scholar
[21]
Ostafiychuk, B. K., Gasyuk, I. M., Kaykan, L. S., Uhorchuk, V. V., Yakubovskiy, P. P., Tsap, V. A., & Kaykan, Yu. S. (2016). Temperature—Frequency Dependences of Dielectric Constants of Magnesium-Substituted Lithium Ferrite. In Metallofizika i Noveishie Tekhnologii (Vol. 36, Issue 1, p.89–102). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
DOI: 10.15407/mfint.36.01.0089
Google Scholar
[22]
Parajuli, D., Murali, N., Rao, A. V., Ramakrishna, A., S, Y. M., & Samatha, K. (2022). Structural, dc electrical resistivity and magnetic investigation of Mg, Ni, and Zn substituted Co-Cu nano spinel ferrites. In South African Journal of Chemical Engineering (Vol. 42, p.106–114). Elsevier BV
DOI: 10.1016/j.sajce.2022.07.009
Google Scholar
[23]
Kaykan, L. S., Sijo, A. K., Mazurenko, J. S., & Żywczak, A. (2021). Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites. In Applied Nanoscience (Vol. 12, Issue 3, p.503–511). Springer Science and Business Media LLC
DOI: 10.1007/s13204-021-01691-0
Google Scholar
[24]
Dhanda, N., Thakur, P., & Thakur, A. (2022). Green synthesis of cobalt ferrite: A study of structural and optical properties. In Materials Today: Proceedings. Elsevier BV
DOI: 10.1016/j.matpr.2022.07.202
Google Scholar
[25]
Rosales-González, O., Bolarín-Miró, A. M., Cortes-Escobedo, C. A., Pedro-García, F., Patiño-Pineda, J. A., & Sánchez-De Jesús, F. (2022). Synthesis of a magnetically removable visible-light photocatalyst based on nickel-doped zinc ferrite. In Ceramics International. Elsevier BV
DOI: 10.1016/j.ceramint.2022.10.101
Google Scholar
[26]
Heikes, R. R., & Johnston, W. D. (1957). Mechanism of Conduction in Li‐Substituted Transition Metal Oxides. In The Journal of Chemical Physics (Vol. 26, Issue 3, p.582–587). AIP Publishing
DOI: 10.1063/1.1743350
Google Scholar
[27]
Mazen, S. A., & Elmosalami, T. A. (2011). Structural and Elastic Properties of Li-Ni Ferrite. In ISRN Condensed Matter Physics (Vol. 2011, p.1–9). Hindawi Limited
DOI: 10.5402/2011/820726
Google Scholar
[28]
Šimša, Z. (1967). The influence of Mn3+ ion clustering on electrical properties of manganese ferrites. In Journal of Physics and Chemistry of Solids (Vol. 28, Issue 12, p.2435–2439). Elsevier BV
DOI: 10.1016/0022-3697(67)90030-3
Google Scholar
[29]
Viswanathan B., Murthy V. (1990). Ferrite Materials, Science and Technology. Norsa Publishing House.
Google Scholar
[30]
Sagar, T. V., Rao, T. S., & Naidu, K. C. B. (2021). AC-electrical conductivity, magnetic susceptibility, dielectric modulus and impedance studies of sol-gel processed nano-NiMgZn ferrites. In Materials Chemistry and Physics (Vol. 258, p.123902). Elsevier BV
DOI: 10.1016/j.matchemphys.2020.123902
Google Scholar
[31]
Pike, G. E. (1972). AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity. In Physical Review B (Vol. 6, Issue 4, p.1572–1580). American Physical Society (APS)
DOI: 10.1103/physrevb.6.1572
Google Scholar
[32]
Mazen, S. A., Dawoud, H. A., & Abu-Elsaad, N. I. (2017). Thermoelectric power and DC conductivity of Li-Cu ferrite. In Journal of Magnetism and Magnetic Materials (Vol. 428, p.119–124). Elsevier BV
DOI: 10.1016/j.jmmm.2016.12.029
Google Scholar
[33]
Jiang, J., Yang, Y.-M., & Li, L.-C. (2008). Effect of heat treatment on the magnetic properties of nanocrystalline spinel Li–Ni ferrite prepared by a simple soft chemistry route. In Journal of Alloys and Compounds (Vol. 464, Issues 1–2, p.370–373). Elsevier BV
DOI: 10.1016/j.jallcom.2007.09.128
Google Scholar
[34]
Manzoor, A., Khan, M. A., Shahzad, A., Al-Muhimeed, T. I., AlObaid, A. A., Albalawi, H., Afzal, A. M., Kashif, M., Tahir, S., & Munir, T. (2021). Influence of B-site cations ordering on magnetization and dielectric relaxations in Li–Ni spinel ferrites. In Ceramics International (Vol. 47, Issue 16, p.22662–22668). Elsevier BV
DOI: 10.1016/j.ceramint.2021.04.280
Google Scholar
[35]
Kumar, N., Singh, R. K., & Singh, P. R. (2021). Structural, optical, and magnetic properties of Pr substituted Li–Ni Ferrites prepared by citrate -precursor method. In Journal of Materials Science: Materials in Electronics (Vol. 32, Issue 8, p.9886–9902). Springer Science and Business Media LLC
DOI: 10.1007/s10854-021-05647-6
Google Scholar