[1]
S. Goktas, A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review, Journal of Alloys and Compounds. 863 (2021) 158734.
DOI: 10.1016/j.jallcom.2021.158734
Google Scholar
[2]
U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520-529.
DOI: 10.1016/j.jhazmat.2009.05.039
Google Scholar
[3]
A.A. Abdul Mutalib, N.F. Jaafar, ZnO photocatalysts applications in abating the organic pollutant contamination: A mini review, Total Environment Research Themes. 3-4 (2022) 100013.
DOI: 10.1016/j.totert.2022.100013
Google Scholar
[4]
J. Chang, E.R. Waclawik, Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities, CrystEngComm. 14 (2012) 4041-4048.
DOI: 10.1039/c2ce25154j
Google Scholar
[5]
M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, Hierarchical ZnO Nanomaterials with Superior Photocatalytic Properties, Journal of Nano Research. 75 (2022) 59-70.
DOI: 10.4028/p-652gfh
Google Scholar
[6]
O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye, Chem Eng J. 164 (2010) 77-84.
DOI: 10.1016/j.cej.2010.08.027
Google Scholar
[7]
M. R. Alenezi, S. J. Henley, N. G. Emerson, S. R. P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties, Nanoscale. 6 (2014) 235−247.
DOI: 10.1039/c3nr04519f
Google Scholar
[8]
M.R. Alenezi, T.H. Alzanki, A.M. Almeshal, A.S. Alshammari, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Hierarchically Designed ZnO Nanostructures Based High Performance Gas Sensors, RSC Adv. 4 (2014) 49521-49528.
DOI: 10.1039/c4ra08732a
Google Scholar
[9]
M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, Hierarchical zinc oxide nanobrushes ultraviolet photodetector, Micro & Nano Letters. 17 (12) (2022) 299-308.
DOI: 10.1049/mna2.12135
Google Scholar
[10]
M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, On-substrate fabrication of a self-activated nanostructured ZnO gas sensor, Nanoscale Advances. 4 (21) (2022) 4481-4489.
DOI: 10.1039/d2na00300g
Google Scholar
[11]
M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, ZnO nanoleaves with superior photodetection properties, Materials Advances. 3 (16) (2022) 6577-6583
DOI: 10.1039/d2ma00686c
Google Scholar
[12]
Y.H. Ni, X.W. Wei, X. Ma, J.M. Hong, CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals, J. Cryst. Growth. 283 (2005) 48-56.
DOI: 10.1016/j.jcrysgro.2005.05.048
Google Scholar
[13]
R. Lindsay, E. Michelangeli, B.G. Daniels, T.V. Ashworth, A.J. Limb, G. Thornton, A. Gutierrez-Sosa, A. Baraldi, R. Larciprete, S. Lizzit, Impact of Defects on the Surface Chemistry of ZnO(0001̄)−O, J. Am. Chem. Soc. 124 (2002) 7117-1722.
DOI: 10.1021/ja025904u
Google Scholar
[14]
R. Lindsay, E. Michelangeli, B.G. Daniels, T.V. Ashworth, A.J. Limb, H. Thornton Geistlinger, The influence of chemisorption on the defect equilibrium of metal oxide thin films, J. Appl. Phys. 80 (1996) 1370-1380.
DOI: 10.1063/1.362936
Google Scholar
[15]
M.M. Hossain, M.A. Islam, H. Shima, M. Hasan, M. Hilal, M. Lee, Recrystallization techniques for the synthesis of ZnO nanorods: an in situ process for carbon doping and enhancing the dispersion concentration of ZnO nanorods. RSC advances, 8 (30) (2018) 16927-16936.
DOI: 10.1039/c8ra03016b
Google Scholar
[16]
Z.L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Appl. Phys. A: Mater. Sci. Process. 88 (2007) 7-15.
DOI: 10.1007/s00339-007-3942-8
Google Scholar
[17]
J. Yang, J. Wang, X. Li, J. Lang, F. Liu, L. Yang, H. Zhai, M. Gao, X. Zhao, Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties, Journal of Alloys and Compounds 528 (2012) 28-33.
DOI: 10.1016/j.jallcom.2012.02.162
Google Scholar
[18]
A.B. Djurisic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G. Rao, W.K. Chan, H.F. Lui, C. Surya, Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Adv. Funct. Mater. 14 (2004) 856-864.
DOI: 10.1002/adfm.200305082
Google Scholar
[19]
X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Lett. 78 (2001) 2285-2288.
DOI: 10.1063/1.1361288
Google Scholar
[20]
M. Montero-Muñoz, J.E. Ramos-Ibarra, J.E. Rodríguez-Páez, M.D. Teodoro, G.E. Marques, A.R. Sanabria, P.C. Cajas, C.A. Páez, B. Heinrichs, J.A.H. Coaquira, Role of defects on the enhancement of the photocatalytic response of ZnO nanostructures, Applied Surface Science. 448 (2018) 646-654.
DOI: 10.1016/j.apsusc.2018.04.105
Google Scholar
[21]
S.L. Xiong, J.B. Xi, C.M. Wang, D.H. Xu, X.M. Feng, Z.C. Zhu, Y.T. Qian, unable Synthesis of Various Wurtzite ZnS Architectural Structures and Their Photocatalytic Properties, AdV. Funct. Mater. 17 (2007) 2728-2738.
DOI: 10.1002/adfm.200600891
Google Scholar
[22]
C.S. Rout, S.H. Krishna, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes, Chem. Phy. Lett. 418 (2006) 586-590.
DOI: 10.1016/j.cplett.2005.11.040
Google Scholar
[23]
J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators, B. 66 (2000) 277-279.
DOI: 10.1016/s0925-4005(00)00381-6
Google Scholar
[24]
A´. Ne´meth, E. Horva´th, Z. La´badi, L. Feda´k, I. Ba´rsony, Single step deposition of different morphology ZnO gas sensing films, Sens. Actuators B. 127 (2007) 157-160.
DOI: 10.1016/j.snb.2007.07.091
Google Scholar
[25]
P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Luminescence mechanism of ZnO thin film investigated by XPS measurement, Appl. Phys. A: Mater. Sci. Process. 90 (2008) 317-321.
DOI: 10.1007/s00339-007-4275-3
Google Scholar
[26]
M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R. F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci. 158 (2000) 134.
DOI: 10.1016/s0169-4332(99)00601-7
Google Scholar