Crystal Facets Influence on Photocatalytic Properties of ZnO Nanomaterials

Article Preview

Abstract:

Using a facile hydrothermal method, ZnO nanomaterials with various morphological structures (nanowires, nanodiscs, and nanostars) were produced. An investigation was conducted into the relationships between the exposed polar facets and the photocatalytic activities. Based on XPS, Pl, and structural analysis, it was discovered that the exposed facets’ chemsorption ability of the different ZnO nanomaterials with different morphologies plays a vital role in their photocatalytic properties. Zinc-terminated surfaces had the highest chemsorption ability and consequently the ZnO nanodiscs with the highest fraction of exposed Zinc-terminated facets were the ideal photocatalysts from the tested morphologies. This work emphasises the important influence of rational control over the nanomaterial morphology on its physical and chemical properties and therefore on its performance in various practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-23

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Goktas, A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review, Journal of Alloys and Compounds. 863 (2021) 158734.

DOI: 10.1016/j.jallcom.2021.158734

Google Scholar

[2] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520-529.

DOI: 10.1016/j.jhazmat.2009.05.039

Google Scholar

[3] A.A. Abdul Mutalib, N.F. Jaafar, ZnO photocatalysts applications in abating the organic pollutant contamination: A mini review, Total Environment Research Themes. 3-4 (2022) 100013.

DOI: 10.1016/j.totert.2022.100013

Google Scholar

[4] J. Chang, E.R. Waclawik, Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities, CrystEngComm. 14 (2012) 4041-4048.

DOI: 10.1039/c2ce25154j

Google Scholar

[5] M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, Hierarchical ZnO Nanomaterials with Superior Photocatalytic Properties, Journal of Nano Research. 75 (2022) 59-70.

DOI: 10.4028/p-652gfh

Google Scholar

[6] O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye, Chem Eng J. 164 (2010) 77-84.

DOI: 10.1016/j.cej.2010.08.027

Google Scholar

[7] M. R. Alenezi, S. J. Henley, N. G. Emerson, S. R. P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties, Nanoscale. 6 (2014) 235−247.

DOI: 10.1039/c3nr04519f

Google Scholar

[8] M.R. Alenezi, T.H. Alzanki, A.M. Almeshal, A.S. Alshammari, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Hierarchically Designed ZnO Nanostructures Based High Performance Gas Sensors, RSC Adv. 4 (2014) 49521-49528.

DOI: 10.1039/c4ra08732a

Google Scholar

[9] M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, Hierarchical zinc oxide nanobrushes ultraviolet photodetector, Micro & Nano Letters. 17 (12) (2022) 299-308.

DOI: 10.1049/mna2.12135

Google Scholar

[10] M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, On-substrate fabrication of a self-activated nanostructured ZnO gas sensor, Nanoscale Advances. 4 (21) (2022) 4481-4489.

DOI: 10.1039/d2na00300g

Google Scholar

[11] M.R. Alenezi, A.M. Almeshal, A.N. Alkhaledi, ZnO nanoleaves with superior photodetection properties, Materials Advances. 3 (16) (2022) 6577-6583

DOI: 10.1039/d2ma00686c

Google Scholar

[12] Y.H. Ni, X.W. Wei, X. Ma, J.M. Hong, CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals, J. Cryst. Growth. 283 (2005) 48-56.

DOI: 10.1016/j.jcrysgro.2005.05.048

Google Scholar

[13] R. Lindsay, E. Michelangeli, B.G. Daniels, T.V. Ashworth, A.J. Limb, G. Thornton, A. Gutierrez-Sosa, A. Baraldi, R. Larciprete, S. Lizzit, Impact of Defects on the Surface Chemistry of ZnO(0001̄)−O, J. Am. Chem. Soc. 124 (2002) 7117-1722.

DOI: 10.1021/ja025904u

Google Scholar

[14] R. Lindsay, E. Michelangeli, B.G. Daniels, T.V. Ashworth, A.J. Limb, H. Thornton Geistlinger, The influence of chemisorption on the defect equilibrium of metal oxide thin films, J. Appl. Phys. 80 (1996) 1370-1380.

DOI: 10.1063/1.362936

Google Scholar

[15] M.M. Hossain, M.A. Islam, H. Shima, M. Hasan, M. Hilal, M. Lee, Recrystallization techniques for the synthesis of ZnO nanorods: an in situ process for carbon doping and enhancing the dispersion concentration of ZnO nanorods. RSC advances, 8 (30) (2018) 16927-16936.

DOI: 10.1039/c8ra03016b

Google Scholar

[16] Z.L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Appl. Phys. A: Mater. Sci. Process. 88 (2007) 7-15.

DOI: 10.1007/s00339-007-3942-8

Google Scholar

[17] J. Yang, J. Wang, X. Li, J. Lang, F. Liu, L. Yang, H. Zhai, M. Gao, X. Zhao, Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties, Journal of Alloys and Compounds 528 (2012) 28-33.

DOI: 10.1016/j.jallcom.2012.02.162

Google Scholar

[18] A.B. Djurisic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G. Rao, W.K. Chan, H.F. Lui, C. Surya, Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Adv. Funct. Mater. 14 (2004) 856-864.

DOI: 10.1002/adfm.200305082

Google Scholar

[19] X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Lett. 78 (2001) 2285-2288.

DOI: 10.1063/1.1361288

Google Scholar

[20] M. Montero-Muñoz, J.E. Ramos-Ibarra, J.E. Rodríguez-Páez, M.D. Teodoro, G.E. Marques, A.R. Sanabria, P.C. Cajas, C.A. Páez, B. Heinrichs, J.A.H. Coaquira, Role of defects on the enhancement of the photocatalytic response of ZnO nanostructures, Applied Surface Science. 448 (2018) 646-654.

DOI: 10.1016/j.apsusc.2018.04.105

Google Scholar

[21] S.L. Xiong, J.B. Xi, C.M. Wang, D.H. Xu, X.M. Feng, Z.C. Zhu, Y.T. Qian, unable Synthesis of Various Wurtzite ZnS Architectural Structures and Their Photocatalytic Properties, AdV. Funct. Mater. 17 (2007) 2728-2738.

DOI: 10.1002/adfm.200600891

Google Scholar

[22] C.S. Rout, S.H. Krishna, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes, Chem. Phy. Lett. 418 (2006) 586-590.

DOI: 10.1016/j.cplett.2005.11.040

Google Scholar

[23] J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators, B. 66 (2000) 277-279.

DOI: 10.1016/s0925-4005(00)00381-6

Google Scholar

[24] A´. Ne´meth, E. Horva´th, Z. La´badi, L. Feda´k, I. Ba´rsony, Single step deposition of different morphology ZnO gas sensing films, Sens. Actuators B. 127 (2007) 157-160.

DOI: 10.1016/j.snb.2007.07.091

Google Scholar

[25] P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Luminescence mechanism of ZnO thin film investigated by XPS measurement, Appl. Phys. A: Mater. Sci. Process. 90 (2008) 317-321.

DOI: 10.1007/s00339-007-4275-3

Google Scholar

[26] M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R. F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci. 158 (2000) 134.

DOI: 10.1016/s0169-4332(99)00601-7

Google Scholar