[1]
Rahman, I.A. and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites 2014;A Review. Journal of Nanomaterials, 2012. 2012: p.15.
DOI: 10.1155/2012/132424
Google Scholar
[2]
Rashi, S., Dr. S.K. Prajapati, and D. Sigh, Mesoporous silica nanoparticles for controlled drug delivery. World journalL of pharmacy and Pharmaceutical science, 2015. 04(06): pp.332-347.
Google Scholar
[3]
He, Y., J. Li, M. Long, S. Liang, and H. Xu, Tuning pore size of mesoporous silica nanoparticles simply by varying reaction parameters. Journal of Non-Crystalline Solids, 2017. 457: pp.9-12.
DOI: 10.1016/j.jnoncrysol.2016.11.023
Google Scholar
[4]
Ha, C.-S. and S.S. Park, General synthesis and physico-chemical properties of mesoporous materials, in Periodic Mesoporous Organosilicas. 2019, Springer. pp.15-85.
DOI: 10.1007/978-981-13-2959-3_2
Google Scholar
[5]
Glover, T.G., B.J. Melde, and B.J. Johnson, Nanoporous silicas and their composites, in Nanoporous Materials for Molecule Separation and Conversion. 2020, Elsevier. pp.89-140.
DOI: 10.1016/b978-0-12-818487-5.00004-2
Google Scholar
[6]
Mohamed Isa, E.D., H. Ahmad, M.B. Abdul Rahman, and M.R. Gill, Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. Pharmaceutics, 2021. 13(2): p.152.
DOI: 10.3390/pharmaceutics13020152
Google Scholar
[7]
Lv, X., L. Zhang, F. Xing, and H. Lin, Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation. Microporous and Mesoporous Materials, 2016. 225: pp.238-244.
DOI: 10.1016/j.micromeso.2015.12.024
Google Scholar
[8]
Che, E., Y. Gao, L. Wan, Y. Zhang, N. Han, J. Bai, J. Li, Z. Sha, and S. Wang, Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: Preparation and antitumor efficacy in vivo. Microporous and Mesoporous Materials, 2015. 204: pp.226-234.
DOI: 10.1016/j.micromeso.2014.11.013
Google Scholar
[9]
Xiong, L., X. Du, B. Shi, J. Bi, F. Kleitz, and S.Z. Qiao, Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B, 2015. 3(8): pp.1712-1721.
DOI: 10.1039/c4tb01601g
Google Scholar
[10]
Lin, Y.-S. and C.L. Haynes, Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Journal of the American Chemical Society, 2010. 132(13): pp.4834-4842.
DOI: 10.1021/ja910846q
Google Scholar
[11]
Lin, Y.-S. and C.L. Haynes, Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials, 2009. 21(17): pp.3979-3986.
DOI: 10.1021/cm901259n
Google Scholar
[12]
Moeller, K., J. Kobler, and T. Bein, Colloidal suspensions of nanometer‐sized mesoporous silica. Advanced Functional Materials, 2007. 17(4): pp.605-612.
DOI: 10.1002/adfm.200600578
Google Scholar
[13]
Tang, F., L. Li, and D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials, 2012. 24(12): pp.1504-1534.
DOI: 10.1002/adma.201104763
Google Scholar
[14]
Stöber, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 1968. 26(1): pp.62-69.
DOI: 10.1016/0021-9797(68)90272-5
Google Scholar
[15]
Yang, Y., Synthesis of self-assembled nanoporous silica for therapeutic delivery. 2015.
Google Scholar
[16]
Sigwadi, R., T. Mokrani, M.S. Dhlamini, P. Nonjola, and P.F. Msomi, Nafion®/sulfated zirconia oxide-nanocomposite membrane: The effects of ammonia sulfate on fuel permeability. Journal of Polymer Research, 2019. 26(5): pp.1-14.
DOI: 10.1007/s10965-019-1760-2
Google Scholar
[17]
Wong, C.Y., W.Y. Wong, K.S. Loh, W.R.W. Daud, K.L. Lim, M. Khalid, and R. Walvekar, Development of poly (vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review. Polymer reviews, 2020. 60(1): pp.171-202.
DOI: 10.1080/15583724.2019.1641514
Google Scholar
[18]
Dong, W.-S., F.-Q. Lin, C.-L. Liu, and M.-Y. Li, Synthesis of ZrO2 nanowires by ionic-liquid route. Journal of colloid and interface science, 2009. 333(2): pp.734-740.
DOI: 10.1016/j.jcis.2009.02.025
Google Scholar
[19]
Rajkumar, R. and C. Vedhi, A study of corrosion protection efficiency of silica nanoparticles acrylic coated on mild steel electrode. Vacuum, 2019. 161: pp.1-4.
DOI: 10.1016/j.vacuum.2018.12.005
Google Scholar
[20]
Xu, F., J. Yu, D. Li, N. Xiang, Q. Zhang, and L. Shao, Solvent effects on structural properties of SiO 2 gel using n-octylamine as a catalyst. Journal of sol-gel science and technology, 2014. 71(2): pp.204-210.
DOI: 10.1007/s10971-014-3354-0
Google Scholar
[21]
Hilonga, A., J.-K. Kim, P.B. Sarawade, and H.T. Kim, Low-density TEOS-based silica aerogels prepared at ambient pressure using isopropanol as the preparative solvent. Journal of Alloys and Compounds, 2009. 487(1-2): pp.744-750.
DOI: 10.1016/j.jallcom.2009.08.055
Google Scholar
[22]
Khalil, E., F. ElBatal, Y. Hamdy, H. Zidan, M. Aziz, and A. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses. Physica B: Condensed Matter, 2010. 405(5): pp.1294-1300.
DOI: 10.1016/j.physb.2009.11.070
Google Scholar
[23]
Naderi, N. and M. Hashim, Effect of surface morphology on electrical properties of electrochemically-etched porous silicon photodetectors. Int. J. Electrochem. Sci, 2012. 7(11): pp.11512-11518.
Google Scholar
[24]
Wang, G., Y. Sun, D. Li, H.W. Liang, R. Dong, X. Feng, and K. Müllen, Controlled synthesis of N‐doped carbon nanospheres with tailored mesopores through self‐assembly of colloidal silica. Angewandte Chemie, 2015. 127(50): pp.15406-15411.
DOI: 10.1002/ange.201507735
Google Scholar
[25]
Yamada, H., C. Urata, S. Higashitamori, Y. Aoyama, Y. Yamauchi, and K. Kuroda, Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS applied materials and interfaces, 2014. 6(5): pp.3491-3500.
DOI: 10.1021/am405633r
Google Scholar
[26]
Porozhnyy, M., S. Shkirskaya, D.Y. Butylskii, V. Dotsenko, E.Y. Safronova, A. Yaroslavtsev, S. Deabate, P. Huguet, and V. Nikonenko, Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization. Electrochimica Acta, 2021. 370: p.137689.
DOI: 10.1016/j.electacta.2020.137689
Google Scholar
[27]
Coville, N.J. and A.M. Tshavhungwe, Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions. South African Journal of Science, 2010. 106(7): pp.1-5.
DOI: 10.4102/sajs.v106i7/8.213
Google Scholar
[28]
Xi, Y., Z. Liangying, and W. Sasa, Pore size and pore-size distribution control of porous silica. Sensors and Actuators B: Chemical, 1995. 25(1-3): pp.347-352.
DOI: 10.1016/0925-4005(95)85078-3
Google Scholar
[29]
Xu, F., C. Wang, D. Li, M. Wang, F. Xu, and X. Deng, Preparation of modified epoxy–SiO2 hybrid materials and their application in the stone protection. Progress in Organic Coatings, 2015. 81: pp.58-65.
DOI: 10.1016/j.porgcoat.2014.12.017
Google Scholar
[30]
Björklund, S. and V. Kocherbitov, Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica. Scientific reports, 2017. 7(1): pp.1-11.
DOI: 10.1038/s41598-017-10090-x
Google Scholar
[31]
Wang, S., Z. Tan, Y. Li, L. Sun, and T. Zhang, Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochimica Acta, 2006. 441(2): pp.191-194.
DOI: 10.1016/j.tca.2005.05.020
Google Scholar
[32]
He, Y., H. Xu, S. Ma, P. Zhang, W. Huang, and M. Kong, Fabrication of mesoporous spherical silica nanoparticles and effects of synthesis conditions on particle mesostructure. Materials Letters, 2014. 131: pp.361-365.
DOI: 10.1016/j.matlet.2014.06.026
Google Scholar
[33]
Lewandowska-Łańcucka, J., M. Staszewska, M. Szuwarzyński, M. Kępczyński, M. Romek, W. Tokarz, A. Szpak, G. Kania, and M. Nowakowska, Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell. Journal of Alloys and Compounds, 2014. 586: pp.45-51.
DOI: 10.1016/j.jallcom.2013.10.039
Google Scholar
[34]
Lee, Y.W., K. Do, T.H. Lee, S.S. Jeon, W.J. Yoon, C. Kim, J. Ko, and S.S. Im, Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synthetic metals, 2013. 174: pp.6-13.
DOI: 10.1016/j.synthmet.2013.04.009
Google Scholar
[35]
Islam, M., M.R. Azhar, N. Fredj, T.D. Burleigh, O.R. Oloyede, A.A. Almajid, and S.I. Shah, Influence of SiO2 nanoparticles on hardness and corrosion resistance of electroless Ni–P coatings. Surface and Coatings Technology, 2015. 261: pp.141-148.
DOI: 10.1016/j.surfcoat.2014.11.044
Google Scholar