Hydrothermally Synthesized Cu2ZnSnS4 Nanoparticles for Photocatalytic Degradation of Rhodamine B Dye

Article Preview

Abstract:

Industrial dyes contained a wide range of organic compounds that could affect the environment and high dimensional challenges to humans. In recent years, the environmentally safe and inexpensive quaternary copper-based chalcogenide Cu2ZnSnS4 (CZTS) has emerged as a material for photovoltaics and photocatalysis. CZTS nanoparticles were prepared in this investigation using the hydrothermal route at 210 °C for 24 h without the addition of a surfactant or capping agents. Rhodamine B (RhB), a carcinogenic dye, was degraded using the synthesized material through a photocatalytic process. The structural, morphological, optical, and photocatalytic characteristics of CZTS nanoparticles were examined using X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. The average particle size of CZTS is found to be 31 nm with crystalline nature have been characterized by XRD. The results demonstrate that the synthesized sample has mixed morphological structures such as clew-like and flower-like structures and a bandgap of 1.50 eV. CZTS nanoparticles were used as photocatalysts under direct sunlight for Rhodamine B degradation, with the fastest degradation efficiency of 72% at 50 minutes. The results show that surfactant-free hydrothermally synthesized CZTS nanoparticles are a very promising material for the degradation of RhB dye due to the rapid degradation rate and high degradation efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-36

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Arthanareeswari., S. Devikala, M. Sridharan, Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications, Materials Today: Proceedings. 14 (2019) 332-337.

DOI: 10.1016/j.matpr.2019.04.155

Google Scholar

[2] C. Adán, A. Bahamonde, M. Fernández-García, A.Martínez-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Applied Catalysis B: Environmental 72 (2007) 11-17.

DOI: 10.1016/j.apcatb.2006.09.018

Google Scholar

[3] CH. Chiou, and R.S Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, Journal of hazardous materials 149 (2007) 1-7.

DOI: 10.1016/j.jhazmat.2007.03.035

Google Scholar

[4] K. Selvam, M. Muruganandham, I. Muthuvel, and M. Swaminathan, The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol, Chemical Engineering Journal 128 (2007) 51-57.

DOI: 10.1016/j.cej.2006.07.016

Google Scholar

[5] I.M. Banat, P. Nigam, D. Singh, and R. Marchant, Microbial decolorization of textile-dye containing effluents: a review, Bioresource technology 58 (1996) 217-227.

DOI: 10.1016/s0960-8524(96)00113-7

Google Scholar

[6] N. Daneshvar, D. Salari, and A. R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, Journal of Photochemistry and Photobiology A: Chemistry 157 (2003) 111-116.

DOI: 10.1016/s1010-6030(03)00015-7

Google Scholar

[7] T. Robinson, G. McMullan, R. Marchant, and P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource technology 77 (2001) 247-255.

DOI: 10.1016/s0960-8524(00)00080-8

Google Scholar

[8] E. Wang, Q. Zheng, Xu. Shihong, and Li. Dengxin, Treatment of methyl orange by photocatalysis floating bed, Procedia Environmental Sciences 10 (2011) 1136-1140.

DOI: 10.1016/j.proenv.2011.09.181

Google Scholar

[9] T. Kurbus, Y. M Slokar, A.M. Le Marechal, D.B Vončina, The use of experimental design for the evaluation of the influence of variables on the H2O2/UV treatment of model textile waste water, Dyes and Pigments 58 (2003) 171-178.

DOI: 10.1016/s0143-7208(03)00054-8

Google Scholar

[10] [10]. F. J. Benitez, J.Beltran-Heredia, J.L. Acero, F.J. Rubio, Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes, Chemosphere 41 (2000) 1271-1277.

DOI: 10.1016/s0045-6535(99)00536-6

Google Scholar

[11] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M.Ebrahimi, A.Z. Moshfegh, Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review, Research on Chemical Intermediates 45 (2019) 2197-2254.

DOI: 10.1007/s11164-018-03729-5

Google Scholar

[12] N.R. Khalid, E. Ahmed, Zhanglian Hong, L. Sana, and M. Ahmed, Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation, Current Applied Physics 13 (2013) 659-663.

DOI: 10.1016/j.cap.2012.11.003

Google Scholar

[13] S. Sarkar, B. Das, P. R. Midya, G. C. Das, K. K. Chattopadhyay, Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route, Materials Letters 152 (2015) 155-158.

DOI: 10.1016/j.matlet.2015.03.083

Google Scholar

[14] S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu 2 ZnSnS 4, Physical Review B 81 (2010) 245204.

DOI: 10.1103/physrevb.81.245204

Google Scholar

[15] C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, Aobo Pu, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nature energy 3 (2018) 764-772.

DOI: 10.1038/s41560-018-0206-0

Google Scholar

[16] H.J. Gu, J-H. Yang,S. Y. Chen, H. J. Xiang, X. G.Gong, Interfacial engineering to improve Cu2ZnSnX4 (X= S, Se) solar cell efficiency, APL Materials 7 (2019) 091104.

DOI: 10.1063/1.5116623

Google Scholar

[17] S.J. Lin, J.M Ting, Y.S Fu, Single-phase,high-purity Cu2ZnSnS4 nanoparticles via a hydrothermal route, Ceramics International 44 (2018) 4450-4456.

DOI: 10.1016/j.ceramint.2017.12.046

Google Scholar

[18] R.V. Digraskar, V.S. Sapner, S.M. Mali, S.S. Narwade, A.V. Ghule, B.R. Sathe, CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction, ACS omega 4 (2019) 7650-7657.

DOI: 10.1021/acsomega.8b03587

Google Scholar

[19] S.Kumar, M. Altosaar, M. Grossberg, V. Mikli, Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis, Superlattices and Microstructures 116 (2018) 54-63.

DOI: 10.1016/j.spmi.2018.02.019

Google Scholar

[20] Z. Hou, Y. Li, J. Liu, H. Shen, X. Huo, The visible light-driven highly efficient photocatalytic properties of Cu2ZnSnS 4 nanoparticles synthesized by a hydrothermal method, New Journal of Chemistry 45 (2021) 1743-1752.

DOI: 10.1039/d0nj05250g

Google Scholar

[21] S.S Fouad, I. M. El Radaf, P. Sharma, M. S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties, Journal of Alloys and Compounds 757 (2018) 124-133.

DOI: 10.1016/j.jallcom.2018.05.033

Google Scholar

[22] M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells, Energy & Environmental Science 8 (2015) 3134-3159.

DOI: 10.1039/c5ee02153g

Google Scholar

[23] M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D. B. Mitzi, Optical designs that improve the efficiency of Cu 2 ZnSn (S, Se) 4 solar cells, Energy & Environmental Science 7 (2014) 1029-1036.

DOI: 10.1039/c3ee42541j

Google Scholar

[24] Y. Guo, J. Wei, T.Yang, Lv.Zhibin, Z. Xu, Manipulation of surface plasmon resonance for high photocatalytic activity of Ag-Bi2WO6 hetero-architecture, Optik 180 (2019) 285-294.

DOI: 10.1016/j.ijleo.2018.11.094

Google Scholar

[25] M. Sampath, K. Sankarasubramanian, J. Archana, Y. Hayakawa, K. Ramamurthi, K. Sethuraman. Structural, optical and photocatalytic properties of spray deposited Cu2ZnSnS4 thin films with various S/(Cu+ Zn+ Sn) ratio, Materials Science in Semiconductor Processing, 87 (2018) 54-64.

DOI: 10.1016/j.mssp.2018.07.001

Google Scholar

[26] P. Kush, S. Deka, Anisotropic kesterite Cu2ZnSnSe4 colloidal nanoparticles: Photoelectrical and photocatalytic properties, Materials Chemistry and Physics, 162 (2015) 608-16.

DOI: 10.1016/j.matchemphys.2015.06.034

Google Scholar

[27] Q.B. Wei, P. Xu, X.P Ren, F. Fu, Flower-like Cu2ZnSnS4 architectures synthesize and their visible-light catalytic properties, Journal of Alloys and Compounds 770 (2019) 424-432.

DOI: 10.1016/j.jallcom.2018.08.140

Google Scholar

[28] S, A. Phaltane, S. A. Vanalakar, T. S. Bhat, P. S. Patil, S. D. Sartale, and L. D. Kadam, Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles, Journal of Materials Science: Materials in Electronics 28 (2017) 8186-8191.

DOI: 10.1007/s10854-017-6527-0

Google Scholar

[29] J.M.R. Tan, Y.H. Lee, S. Pedireddy, T. Baikie, X.Y Ling, Lydia Helena Wong, Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanoparticles, Journal of the American Chemical Society 136 (2014) 6684-6692.

DOI: 10.1021/ja501786s

Google Scholar

[30] L. Yin, D. Zhang, D.Wang, X. Kong, J. Huang, F. Wang, Y. Wu, Size-dependent photocatalytic activity of ZnS nanostructures prepared by a facile precipitation method, Materials Science and Engineering: B 208 (2016) 15-21.

DOI: 10.1016/j.mseb.2016.02.004

Google Scholar

[31] Mokurala K, Kamble A, Bathina C, Bhargava P, Mallick S. Effect of solvent, reaction time on morphology of Cu2ZnSnS4 (CZTS) nanoparticles and its application in Dye Sensitized Solar Cells. Materials Today: Proceedings. 3 (2016) 1778-84.

DOI: 10.1016/j.matpr.2016.04.074

Google Scholar

[32] Yan X, Hu X, Komarneni S. Solvothermal synthesis of CZTS nanoparticles in ethanol: Preparation and characterization. Journal of the Korean Physical Society 66 (2015) 1511-1515.

DOI: 10.3938/jkps.66.1511

Google Scholar

[33] Mkawi EM, Al-Hadeethi Y, Al-Hartomy O, Bekyarova E. Size-controlling of Cu2ZnSnS4 nanoparticles: Effects of stabilizing/reducing agents on material properties. Results in Physics. 19 (2020) 103407.

DOI: 10.1016/j.rinp.2020.103407

Google Scholar

[34] X. Yu, A. Shavel, X. An, Z. Luo, M. Ib´a˜nez, A. Cabot, Cu2ZnSnS4-Pt and Cu2ZnSnS4- Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation, J. Am. Chem. Soc. 136, (2014) 9236–9239.

DOI: 10.1021/ja502076b

Google Scholar

[35] A. Abbas, Li K, X. Guo, A. Wu, C. Song, H. Yang, S. Attique, A. Ul Ahmad, F. Ali, Influence of surfactant-assisted synthesis and different operational parameters on photocatalytic performance of Cu2FeSnS4 particles, Surfaces and Interfaces. 24 (2021) 101134

DOI: 10.1016/j.surfin.2021.101134

Google Scholar

[36] K. Rawat, P.K. Shishodia, Structural and optical properties of sol-gel derived Cu2ZnSnS4 nanoparticles, Advanced Powder Technology 28 (2017) 611-617.

DOI: 10.1016/j.apt.2016.11.013

Google Scholar

[37] C. Sabanhalli, K. Roy, M. P. Kumar, Ravi Mudike, Prasanna D. Shivaramu, KG Basava Kumar, Nagaraj Basavegowda, and Dinesh Rangappa, Supercritical fluid synthesized Cu2ZnSnS4-Polyaniline nanocomposites for supercapacitor application, Ceramics International (2022).

DOI: 10.1016/j.ceramint.2022.08.104

Google Scholar

[38] PA. Ajibade, AE. Oluwalana, Structural, optical, photocatalytic and electrochemical studies of PbS nanoparticles, Journal of Nano Research 61, (2020) 18-31.

DOI: 10.4028/www.scientific.net/jnanor.61.18

Google Scholar

[39] L. Khan, S. Ullah, A. Bouich, H. Ullah, B.Mari, Synthesis of CZTS kesterite by pH adjustment in order to improve the performance of CZTS thin film for photovoltaic applications, Superlattices and Microstructures (2022) 107185.

DOI: 10.1016/j.spmi.2022.107185

Google Scholar

[40] Y. Altowairqi, A. Alsubaie, K. P. Stroh, I. G. Perez-Marin, L. Bowen, M. Szablewski, D. P. Halliday, The effect of annealing conditions: temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties, Materials Today: Proceedings 18 (2019) 473-486.

DOI: 10.1016/j.matpr.2019.06.234

Google Scholar

[41] Deng X, Wang C, Yang H, Shao M, Zhang S, Wang X, Ding M, Huang J, Xu X. One-pot hydrothermal synthesis of CdS decorated CuS micro flower-like structures for enhanced photocatalytic properties. Scientific reports. 7 (2017)3877.

DOI: 10.1038/s41598-017-04270-y

Google Scholar

[42] Dong W, Wang X, Li B, Wang L, Chen B, Li C, Li X, Zhang T, Shi Z. Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalton Transactions. (2011) 243-248.

DOI: 10.1039/c0dt01107j

Google Scholar

[43] Fu Y, Ding Y, Zheng L, Zhu Y, Han S. Morphology‐and Size‐Controlled Fabrication of CdS from Flower‐Like to Spherical Structures and their Application for High‐Performance Photoactivity. European Journal of Inorganic Chemistry 15 (2019) 2086-92.

DOI: 10.1002/ejic.201801464

Google Scholar

[44] Lixiong Y, Dan W, Jianfeng H, Liyun C, Haibo O, Jianpeng W, Xiang Y. Microwave hydrothermal synthesis and photocatalytic activities of morphology-controlled ZnS crystallites. Ceramics International. 41 (2015) 3288-92.

DOI: 10.1016/j.ceramint.2014.10.078

Google Scholar

[45] Ma Q, Wang Y, Kong J, Jia H. Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures. Ceramics International 42 (2016) 2854-60.

DOI: 10.1016/j.ceramint.2015.11.021

Google Scholar

[46] H.Guan, H. Shen, A. Raza, Solvothermal synthesis of p-type Cu2ZnSnS4-based nanocrystals and photocatalytic properties for degradation of methylene blue, Catalysis Letters 147 (2017) 1844-1850.

DOI: 10.1007/s10562-017-2094-5

Google Scholar

[47] X. Zhang, B. Tian, W. Zhen, Z. Li, Y. Wu, G. Lu, Construction of Möbius-strip-like graphene for highly efficient charge transfer and high active hydrogen evolution, Journal of catalysis 354 (2017) 258-269.

DOI: 10.1016/j.jcat.2017.08.021

Google Scholar

[48] M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahir, N. Mahmood, Template-free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst, CrystEngComm 24, (2014) 5290-5300.

DOI: 10.1039/c4ce00090k

Google Scholar

[49] J. Henry, K. Mohanraj, G. Sivakumar, Fabrication of novel CuAgZnSnSe 4–Cu 2 ZnSnSe 4 thin film solar cells by the vacuum evaporation method. New Journal of Chemistry 44, (2020) 15270-80.

DOI: 10.1039/d0nj01841d

Google Scholar

[50] H. Katagiri, K. Jimbo, W. S Maw, K. Oishi, M.Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films 517, (2009) 2455-2460.

DOI: 10.1016/j.tsf.2008.11.002

Google Scholar

[51] S.C Riha, B.A. Parkinson, A. L. Prieto, Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals, Journal of the American Chemical Society 131, (2009) 12054-12055.

DOI: 10.1021/ja9044168

Google Scholar

[52] Y. Yang, Y. Ding, J. Zhang, N. Liang, L. Long, J. Liu, Insight into the Growth Mechanism of Mixed Phase CZTS and the Photocatalytic Performance, Nanomaterials 12, (2022) 1439.

DOI: 10.3390/nano12091439

Google Scholar

[53] Basit MA, Raza F, Karima G, Ali I, Butt S. Development of CZTS-sensitized TiO2 nanoparticles via p-SILAR: concomitant salvaging of photocatalytic SnO2 and CZTS. Journal of Materials Science: Materials in Electronics. 2020 Oct; 31(20):17563-73.

DOI: 10.1007/s10854-020-04312-8

Google Scholar

[54] I. Sheebha, V. Venugopal, J. James, V. Maheskumar, A. Sakunthala, B. Vidhya, Comparative studies on hierarchical flower-like Cu2XSnS4 [X= Zn, Ni, Mn & Co] quaternary semiconductor for electrocatalytic and photocatalytic applications, International Journal of Hydrogen Energy, 45 (2020) 8139-8150.

DOI: 10.1016/j.ijhydene.2020.01.028

Google Scholar

[55] M.B. Zaman, R. Ahmad, R. Poolla, Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications, Int. J. Hydrogen Energy. 44 (2019) 23023–23033.

DOI: 10.1016/j.ijhydene.2019.07.026

Google Scholar