[1]
M. Arthanareeswari., S. Devikala, M. Sridharan, Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications, Materials Today: Proceedings. 14 (2019) 332-337.
DOI: 10.1016/j.matpr.2019.04.155
Google Scholar
[2]
C. Adán, A. Bahamonde, M. Fernández-García, A.Martínez-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Applied Catalysis B: Environmental 72 (2007) 11-17.
DOI: 10.1016/j.apcatb.2006.09.018
Google Scholar
[3]
CH. Chiou, and R.S Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, Journal of hazardous materials 149 (2007) 1-7.
DOI: 10.1016/j.jhazmat.2007.03.035
Google Scholar
[4]
K. Selvam, M. Muruganandham, I. Muthuvel, and M. Swaminathan, The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol, Chemical Engineering Journal 128 (2007) 51-57.
DOI: 10.1016/j.cej.2006.07.016
Google Scholar
[5]
I.M. Banat, P. Nigam, D. Singh, and R. Marchant, Microbial decolorization of textile-dye containing effluents: a review, Bioresource technology 58 (1996) 217-227.
DOI: 10.1016/s0960-8524(96)00113-7
Google Scholar
[6]
N. Daneshvar, D. Salari, and A. R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, Journal of Photochemistry and Photobiology A: Chemistry 157 (2003) 111-116.
DOI: 10.1016/s1010-6030(03)00015-7
Google Scholar
[7]
T. Robinson, G. McMullan, R. Marchant, and P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource technology 77 (2001) 247-255.
DOI: 10.1016/s0960-8524(00)00080-8
Google Scholar
[8]
E. Wang, Q. Zheng, Xu. Shihong, and Li. Dengxin, Treatment of methyl orange by photocatalysis floating bed, Procedia Environmental Sciences 10 (2011) 1136-1140.
DOI: 10.1016/j.proenv.2011.09.181
Google Scholar
[9]
T. Kurbus, Y. M Slokar, A.M. Le Marechal, D.B Vončina, The use of experimental design for the evaluation of the influence of variables on the H2O2/UV treatment of model textile waste water, Dyes and Pigments 58 (2003) 171-178.
DOI: 10.1016/s0143-7208(03)00054-8
Google Scholar
[10]
[10]. F. J. Benitez, J.Beltran-Heredia, J.L. Acero, F.J. Rubio, Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes, Chemosphere 41 (2000) 1271-1277.
DOI: 10.1016/s0045-6535(99)00536-6
Google Scholar
[11]
M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M.Ebrahimi, A.Z. Moshfegh, Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review, Research on Chemical Intermediates 45 (2019) 2197-2254.
DOI: 10.1007/s11164-018-03729-5
Google Scholar
[12]
N.R. Khalid, E. Ahmed, Zhanglian Hong, L. Sana, and M. Ahmed, Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation, Current Applied Physics 13 (2013) 659-663.
DOI: 10.1016/j.cap.2012.11.003
Google Scholar
[13]
S. Sarkar, B. Das, P. R. Midya, G. C. Das, K. K. Chattopadhyay, Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route, Materials Letters 152 (2015) 155-158.
DOI: 10.1016/j.matlet.2015.03.083
Google Scholar
[14]
S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu 2 ZnSnS 4, Physical Review B 81 (2010) 245204.
DOI: 10.1103/physrevb.81.245204
Google Scholar
[15]
C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, Aobo Pu, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nature energy 3 (2018) 764-772.
DOI: 10.1038/s41560-018-0206-0
Google Scholar
[16]
H.J. Gu, J-H. Yang,S. Y. Chen, H. J. Xiang, X. G.Gong, Interfacial engineering to improve Cu2ZnSnX4 (X= S, Se) solar cell efficiency, APL Materials 7 (2019) 091104.
DOI: 10.1063/1.5116623
Google Scholar
[17]
S.J. Lin, J.M Ting, Y.S Fu, Single-phase,high-purity Cu2ZnSnS4 nanoparticles via a hydrothermal route, Ceramics International 44 (2018) 4450-4456.
DOI: 10.1016/j.ceramint.2017.12.046
Google Scholar
[18]
R.V. Digraskar, V.S. Sapner, S.M. Mali, S.S. Narwade, A.V. Ghule, B.R. Sathe, CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction, ACS omega 4 (2019) 7650-7657.
DOI: 10.1021/acsomega.8b03587
Google Scholar
[19]
S.Kumar, M. Altosaar, M. Grossberg, V. Mikli, Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis, Superlattices and Microstructures 116 (2018) 54-63.
DOI: 10.1016/j.spmi.2018.02.019
Google Scholar
[20]
Z. Hou, Y. Li, J. Liu, H. Shen, X. Huo, The visible light-driven highly efficient photocatalytic properties of Cu2ZnSnS 4 nanoparticles synthesized by a hydrothermal method, New Journal of Chemistry 45 (2021) 1743-1752.
DOI: 10.1039/d0nj05250g
Google Scholar
[21]
S.S Fouad, I. M. El Radaf, P. Sharma, M. S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties, Journal of Alloys and Compounds 757 (2018) 124-133.
DOI: 10.1016/j.jallcom.2018.05.033
Google Scholar
[22]
M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells, Energy & Environmental Science 8 (2015) 3134-3159.
DOI: 10.1039/c5ee02153g
Google Scholar
[23]
M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D. B. Mitzi, Optical designs that improve the efficiency of Cu 2 ZnSn (S, Se) 4 solar cells, Energy & Environmental Science 7 (2014) 1029-1036.
DOI: 10.1039/c3ee42541j
Google Scholar
[24]
Y. Guo, J. Wei, T.Yang, Lv.Zhibin, Z. Xu, Manipulation of surface plasmon resonance for high photocatalytic activity of Ag-Bi2WO6 hetero-architecture, Optik 180 (2019) 285-294.
DOI: 10.1016/j.ijleo.2018.11.094
Google Scholar
[25]
M. Sampath, K. Sankarasubramanian, J. Archana, Y. Hayakawa, K. Ramamurthi, K. Sethuraman. Structural, optical and photocatalytic properties of spray deposited Cu2ZnSnS4 thin films with various S/(Cu+ Zn+ Sn) ratio, Materials Science in Semiconductor Processing, 87 (2018) 54-64.
DOI: 10.1016/j.mssp.2018.07.001
Google Scholar
[26]
P. Kush, S. Deka, Anisotropic kesterite Cu2ZnSnSe4 colloidal nanoparticles: Photoelectrical and photocatalytic properties, Materials Chemistry and Physics, 162 (2015) 608-16.
DOI: 10.1016/j.matchemphys.2015.06.034
Google Scholar
[27]
Q.B. Wei, P. Xu, X.P Ren, F. Fu, Flower-like Cu2ZnSnS4 architectures synthesize and their visible-light catalytic properties, Journal of Alloys and Compounds 770 (2019) 424-432.
DOI: 10.1016/j.jallcom.2018.08.140
Google Scholar
[28]
S, A. Phaltane, S. A. Vanalakar, T. S. Bhat, P. S. Patil, S. D. Sartale, and L. D. Kadam, Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles, Journal of Materials Science: Materials in Electronics 28 (2017) 8186-8191.
DOI: 10.1007/s10854-017-6527-0
Google Scholar
[29]
J.M.R. Tan, Y.H. Lee, S. Pedireddy, T. Baikie, X.Y Ling, Lydia Helena Wong, Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanoparticles, Journal of the American Chemical Society 136 (2014) 6684-6692.
DOI: 10.1021/ja501786s
Google Scholar
[30]
L. Yin, D. Zhang, D.Wang, X. Kong, J. Huang, F. Wang, Y. Wu, Size-dependent photocatalytic activity of ZnS nanostructures prepared by a facile precipitation method, Materials Science and Engineering: B 208 (2016) 15-21.
DOI: 10.1016/j.mseb.2016.02.004
Google Scholar
[31]
Mokurala K, Kamble A, Bathina C, Bhargava P, Mallick S. Effect of solvent, reaction time on morphology of Cu2ZnSnS4 (CZTS) nanoparticles and its application in Dye Sensitized Solar Cells. Materials Today: Proceedings. 3 (2016) 1778-84.
DOI: 10.1016/j.matpr.2016.04.074
Google Scholar
[32]
Yan X, Hu X, Komarneni S. Solvothermal synthesis of CZTS nanoparticles in ethanol: Preparation and characterization. Journal of the Korean Physical Society 66 (2015) 1511-1515.
DOI: 10.3938/jkps.66.1511
Google Scholar
[33]
Mkawi EM, Al-Hadeethi Y, Al-Hartomy O, Bekyarova E. Size-controlling of Cu2ZnSnS4 nanoparticles: Effects of stabilizing/reducing agents on material properties. Results in Physics. 19 (2020) 103407.
DOI: 10.1016/j.rinp.2020.103407
Google Scholar
[34]
X. Yu, A. Shavel, X. An, Z. Luo, M. Ib´a˜nez, A. Cabot, Cu2ZnSnS4-Pt and Cu2ZnSnS4- Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation, J. Am. Chem. Soc. 136, (2014) 9236–9239.
DOI: 10.1021/ja502076b
Google Scholar
[35]
A. Abbas, Li K, X. Guo, A. Wu, C. Song, H. Yang, S. Attique, A. Ul Ahmad, F. Ali, Influence of surfactant-assisted synthesis and different operational parameters on photocatalytic performance of Cu2FeSnS4 particles, Surfaces and Interfaces. 24 (2021) 101134
DOI: 10.1016/j.surfin.2021.101134
Google Scholar
[36]
K. Rawat, P.K. Shishodia, Structural and optical properties of sol-gel derived Cu2ZnSnS4 nanoparticles, Advanced Powder Technology 28 (2017) 611-617.
DOI: 10.1016/j.apt.2016.11.013
Google Scholar
[37]
C. Sabanhalli, K. Roy, M. P. Kumar, Ravi Mudike, Prasanna D. Shivaramu, KG Basava Kumar, Nagaraj Basavegowda, and Dinesh Rangappa, Supercritical fluid synthesized Cu2ZnSnS4-Polyaniline nanocomposites for supercapacitor application, Ceramics International (2022).
DOI: 10.1016/j.ceramint.2022.08.104
Google Scholar
[38]
PA. Ajibade, AE. Oluwalana, Structural, optical, photocatalytic and electrochemical studies of PbS nanoparticles, Journal of Nano Research 61, (2020) 18-31.
DOI: 10.4028/www.scientific.net/jnanor.61.18
Google Scholar
[39]
L. Khan, S. Ullah, A. Bouich, H. Ullah, B.Mari, Synthesis of CZTS kesterite by pH adjustment in order to improve the performance of CZTS thin film for photovoltaic applications, Superlattices and Microstructures (2022) 107185.
DOI: 10.1016/j.spmi.2022.107185
Google Scholar
[40]
Y. Altowairqi, A. Alsubaie, K. P. Stroh, I. G. Perez-Marin, L. Bowen, M. Szablewski, D. P. Halliday, The effect of annealing conditions: temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties, Materials Today: Proceedings 18 (2019) 473-486.
DOI: 10.1016/j.matpr.2019.06.234
Google Scholar
[41]
Deng X, Wang C, Yang H, Shao M, Zhang S, Wang X, Ding M, Huang J, Xu X. One-pot hydrothermal synthesis of CdS decorated CuS micro flower-like structures for enhanced photocatalytic properties. Scientific reports. 7 (2017)3877.
DOI: 10.1038/s41598-017-04270-y
Google Scholar
[42]
Dong W, Wang X, Li B, Wang L, Chen B, Li C, Li X, Zhang T, Shi Z. Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalton Transactions. (2011) 243-248.
DOI: 10.1039/c0dt01107j
Google Scholar
[43]
Fu Y, Ding Y, Zheng L, Zhu Y, Han S. Morphology‐and Size‐Controlled Fabrication of CdS from Flower‐Like to Spherical Structures and their Application for High‐Performance Photoactivity. European Journal of Inorganic Chemistry 15 (2019) 2086-92.
DOI: 10.1002/ejic.201801464
Google Scholar
[44]
Lixiong Y, Dan W, Jianfeng H, Liyun C, Haibo O, Jianpeng W, Xiang Y. Microwave hydrothermal synthesis and photocatalytic activities of morphology-controlled ZnS crystallites. Ceramics International. 41 (2015) 3288-92.
DOI: 10.1016/j.ceramint.2014.10.078
Google Scholar
[45]
Ma Q, Wang Y, Kong J, Jia H. Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures. Ceramics International 42 (2016) 2854-60.
DOI: 10.1016/j.ceramint.2015.11.021
Google Scholar
[46]
H.Guan, H. Shen, A. Raza, Solvothermal synthesis of p-type Cu2ZnSnS4-based nanocrystals and photocatalytic properties for degradation of methylene blue, Catalysis Letters 147 (2017) 1844-1850.
DOI: 10.1007/s10562-017-2094-5
Google Scholar
[47]
X. Zhang, B. Tian, W. Zhen, Z. Li, Y. Wu, G. Lu, Construction of Möbius-strip-like graphene for highly efficient charge transfer and high active hydrogen evolution, Journal of catalysis 354 (2017) 258-269.
DOI: 10.1016/j.jcat.2017.08.021
Google Scholar
[48]
M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahir, N. Mahmood, Template-free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst, CrystEngComm 24, (2014) 5290-5300.
DOI: 10.1039/c4ce00090k
Google Scholar
[49]
J. Henry, K. Mohanraj, G. Sivakumar, Fabrication of novel CuAgZnSnSe 4–Cu 2 ZnSnSe 4 thin film solar cells by the vacuum evaporation method. New Journal of Chemistry 44, (2020) 15270-80.
DOI: 10.1039/d0nj01841d
Google Scholar
[50]
H. Katagiri, K. Jimbo, W. S Maw, K. Oishi, M.Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films 517, (2009) 2455-2460.
DOI: 10.1016/j.tsf.2008.11.002
Google Scholar
[51]
S.C Riha, B.A. Parkinson, A. L. Prieto, Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals, Journal of the American Chemical Society 131, (2009) 12054-12055.
DOI: 10.1021/ja9044168
Google Scholar
[52]
Y. Yang, Y. Ding, J. Zhang, N. Liang, L. Long, J. Liu, Insight into the Growth Mechanism of Mixed Phase CZTS and the Photocatalytic Performance, Nanomaterials 12, (2022) 1439.
DOI: 10.3390/nano12091439
Google Scholar
[53]
Basit MA, Raza F, Karima G, Ali I, Butt S. Development of CZTS-sensitized TiO2 nanoparticles via p-SILAR: concomitant salvaging of photocatalytic SnO2 and CZTS. Journal of Materials Science: Materials in Electronics. 2020 Oct; 31(20):17563-73.
DOI: 10.1007/s10854-020-04312-8
Google Scholar
[54]
I. Sheebha, V. Venugopal, J. James, V. Maheskumar, A. Sakunthala, B. Vidhya, Comparative studies on hierarchical flower-like Cu2XSnS4 [X= Zn, Ni, Mn & Co] quaternary semiconductor for electrocatalytic and photocatalytic applications, International Journal of Hydrogen Energy, 45 (2020) 8139-8150.
DOI: 10.1016/j.ijhydene.2020.01.028
Google Scholar
[55]
M.B. Zaman, R. Ahmad, R. Poolla, Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications, Int. J. Hydrogen Energy. 44 (2019) 23023–23033.
DOI: 10.1016/j.ijhydene.2019.07.026
Google Scholar