Autochthonous and Allochthonous Micro and Nanoparticles in Deteriorated Lime Mortars of Historical Buildings

Article Preview

Abstract:

Lime mortars have been commonly used in historical buildings since ancient times. The progressive deterioration of these mortars by air pollution and other environmental causes hinders the assessment of the original composition. The weakening of the mortar structure is due to dissolution and formation of calcium sulphate layers because of the interaction with SOx gaseous pollutants. Also, pollution particles can be incorporated to the mortar because of dissolution by rainwater or runoff. Scanning Electron Microscopy (SEM) studies allow us to distinguish allochthonous and autochthonous micro- and nanoparticles in order to identify original intact plasters. By comparing these intact to deteriorated mortars from both air polluted and non-polluted areas it is possible to indentify and preserve the original mortar composition as a key step to project future façade cleaning and restorations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-45

Citation:

Online since:

September 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Elert, C. Rodriguez-Navarro, E. Sebastian Pardo, E. Hansen and O. Cazalla: Studies in Conservation Vol. 47 (2002), p.62.

DOI: 10.2307/1506835

Google Scholar

[2] D.R. Moorehead: Cement Concrete Res Vol. 16 (1986), p.700.

Google Scholar

[3] J. Adams, W. Kneller and D. Dollimore: Thermochimica Acta Vol. 211 (1992), p.93.

Google Scholar

[4] J. Elsen, A. Brutsaert, M. Deckers and R. Brulet: Mater Characterization Vol. 53 (2004), p.289.

Google Scholar

[5] C. Sabbioni, G. Zappia, C. Riotino, M.T. Blanco-Varela, J. Aguilera, F. Puertas, K. Van Balen and E.E. Toumbakari: Atmos Environ Vol. 35 (2001), p.539.

Google Scholar

[6] M. Santhanam, M.D. Cohen and J. Olek: Cement Concrete Res Vol. 33 (2003), p.341.

Google Scholar

[7] I. Karatasios, V. Kilikoglou, P. Theoulakis, B. Colston and D. Watt: Cement Concrete Res Vol. 30 (2008), p.815.

DOI: 10.1016/j.cemconcomp.2008.06.010

Google Scholar

[8] P. Baglioni and R. Giorgi: Soft Matter Vol. 2 (2006), p.293.

Google Scholar

[9] I. Karatasios, V. Kilikoglou, B. Colston, P. Theoulakis and D. Watt: Cement Concrete Res Vol. 37 (2007), p.886.

DOI: 10.1016/j.cemconres.2007.03.007

Google Scholar

[10] J. Moreda-Piñeiro, C. Moscoso-Pérez, M. Piñeiro-Iglesias, P. López-Mahía, S. MuniateguiLorenzo, E. Fernández-Fernández, D. Prada-Rodríguez: Atomic Spectroscopy Vol. 28 (2007), p.137.

DOI: 10.1016/j.aca.2004.09.046

Google Scholar

[11] R. Varela Diaz: Contaminación atmosférica en Galiza: inventario de emisións de gases de efecto invernadoiro, gases acidificantes e dioxinas, ano 2000 (Baía A Coruña, Spain 2004).

Google Scholar

[12] E. De Vedia y Gossens: Historia y descripción de la ciudad de La Coruña (Imprenta Domingo Puga, A Coruña, Spain 1845).

Google Scholar

[13] S. Bruni, F. Cariati, P. Fermo, P. Cairati, G. Alessandrini and L. Toniolo: Archaeometry Vol. 39 (1997), p.1.

DOI: 10.1111/j.1475-4754.1997.tb00786.x

Google Scholar

[14] J. Sanjurjo Sánchez, J.R. Vidal Romaní and C.A.S. Alves, in: 6th International Symposium on the Conservation of Monuments in the Mediterranean Basin, Lisbon (2004), p.202.

Google Scholar

[15] J. Sanjurjo Sánchez, J.R. Vidal Romaní, D. Fernández-Mosquera and C.A.S. Alves: X-Ray Spectrom Vol. 37 (2008), p.346.

Google Scholar

[16] R. I. Dorn: Rock Coatings (Elsevier, Amsterdam 1998).

Google Scholar

[17] M. Del Monte and C. Sabbioni: Arch Meteorol Geophys Bioclimatol Vol. 35 (1984), p.105.

Google Scholar

[18] A. Arnold and K. Zehnder, in: 1st International Symposium on the Conservation of Monuments in the Mediterranean Basin, Bari (1989), p.13.

Google Scholar

[19] A. Chavas and D. Jeannette: Environ Geology, 40 Vol. (2001), p.359.

Google Scholar