The Viscosity-Propelled Rotary Nanomotor through the Solid-Liquid Interface

Article Preview

Abstract:

This study presents a novel and straightforward model of a nanomotor capable of rotation propelled by friction at the solid-liquid interface. Within this nanosystem operating in a Rotary Electric Field (REF), a pristine carbon nanotube, electrically neutral, is infused with water, serving as the rotor. Polar molecules within the water rotate alongside the REF, generating interface friction that propels the nanotube rotor. Molecular dynamics simulations demonstrate that the nanomotor rapidly achieves a stable rotational frequency (SRF), typically within 200 ps in this investigation. Furthermore, each rotor tube possesses a maximum SRF value, denoted as ωRMax. When the REF frequency (ωE) exceeds ωRMax, the rotor tube, water cluster, and REF exhibit varying rotational frequencies. It is also observed that the relationship between the rotor's SRF and ωE conforms to an inverse square law when ωE surpasses ωRMax. The underlying mechanism is elucidated. These findings can inform the design of a rotary nanomotor constructed from water-filled carbon nanotubes, offering tunable SRF capabilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-54

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wang, Z. Jiang, S. Ouyang, Z. Dai, T. Wang, Internally/Externally bubble-propelled photocatalytic tubular nanomotors for efficient water cleaning, ACS Appl. Mater. 9 (2017) 23974-23982.

DOI: 10.1021/acsami.7b06402

Google Scholar

[2] T. Liu, M. Yan, S. Zhou, Q. Liang, Y. He, X. Zhang, H. Zeng, J. Liu, B. Kong, Site-selective superassembly of a multilevel asymmetric nanomotor with wavelength-modulated propulsion mechanisms, ACS Nano, 17 (2023) 14871-14882.

DOI: 10.1021/acsnano.3c03346

Google Scholar

[3] A.K. Pumm, W. Engelen, E. Kopperger, J. Isensee, M. Vogt, V. Kozina, M. Kube, M.N. Honemann, E. Bertosin, M. Langecker, R. Golestanian, F.C. Simmel, H. Dietz, A DNA origami rotary ratchet motor, Nature, 607 (2022) 492-498

DOI: 10.1038/s41586-022-04910-y

Google Scholar

[4] J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, 289 (2000) 602-604

DOI: 10.1126/science.289.5479.602

Google Scholar

[5] M. Liu, T. Zentgraf, Y.M. Liu, G. Bartal, X. Zhang, Light-driven nanoscale plasmonic motors, Nat. Nanotechnol. 5 (2010) 570-573.

DOI: 10.1038/nnano.2010.128

Google Scholar

[6] R.E. Tuzun, D.W. Noid, B.G. Sumpter, Dynamics of a laser-driven molecular motor, Nanotechnology, 6 (1995) 52-63.

DOI: 10.1088/0957-4484/6/2/004

Google Scholar

[7] M.R. Wilson, J. Sola, A. Carlone, S.M. Goldup, N. Lebrasseur, D.A. Leigh, An autonomous chemically fuelled small-molecule motor, Nature, 534 (2016) 235-240.

DOI: 10.1038/nature18013

Google Scholar

[8] S. Sanchez, L. Soler, J. Katuri, Chemically powered micro- and nanomotors, Angew. 54 (2015) 1414-1444.

DOI: 10.1002/anie.201406096

Google Scholar

[9] R. Ibusuki, T. Morishita, A. Furuta, S. Nakayama, M. Yoshio, H. Kojima, K. Oiwa, K. Furuta, Programmable molecular transport achived by engineering protein motors to move on DNA nanotubes, Science, 375 (2022) 1159-1164.

DOI: 10.1126/science.abj5170

Google Scholar

[10] K. Mo, Y. Zhang, Z. Dong, Y. Yang, X. Ma, B.L. Feringa, D. Zhao, Intrinsically unidirectional chemically fuelled rotary molecular motors, Nature, 609 (2022) 293-298.

DOI: 10.1038/s41586-022-05033-0

Google Scholar

[11] A. Barreiro, R. Rurali, E.R. Hernández, J. Moser, T. Pichler, L. Forró, A. Bachtold, Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes, Science, 320 (2008) 775-778.

DOI: 10.1126/science.1155559

Google Scholar

[12] K. Cai, J.Z. Yu, J. Wan, H. Yin, J. Shi, Q.H. Qin, Configuration jumps of rotor in a nanomotor from carbon nanostructures, Carbon, 101 (2016) 168-176.

DOI: 10.1016/j.carbon.2016.01.089

Google Scholar

[13] J. Shi, Y.H. Li, A.Q. Wang, K. Cai, Rotational behavior of a nanoring protected by argon, Comp. Mater. Sci. 154 (2018) 132-137.

DOI: 10.1016/j.commatsci.2018.07.045

Google Scholar

[14] J. Shi, A.W. Wang, B. Song, K. Cai, A GHz rotary nanoflake driven by diamond needles: A molecular dynamics study, Mater. Des. 191 (2020) 108593.

DOI: 10.1016/j.matdes.2020.108593

Google Scholar

[15] H. Li, A.Q. Wang, J. Shi, Y.J. Liu, G. Cheng, Diamond needles actuating triple-walled carbon nanotube to rotate via thermal vibration-induced collision, Int. J. Mol. Sci. 20 (2019) 1140.

DOI: 10.3390/ijms20051140

Google Scholar

[16] K. Cai, S. Sun, J. Shi, Q.H. Qin, Carbon-nanotube nanomotor driven by graphene origami, Phys. Rev. Appl. 15 (2021) 054017.

DOI: 10.1103/physrevapplied.15.054017

Google Scholar

[17] A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Rotational actuators based on carbon nanotubes, Nature, 424 (2003) 408-410.

DOI: 10.1038/nature01823

Google Scholar

[18] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[19] J. Vacek, J. Michl, Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field, PNAS, 98 (2001) 5481-5486.

DOI: 10.1073/pnas.091100598

Google Scholar

[20] D. Horinek, J. Michl, Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surface, J. Am. Chem. Soc. 125 (2003) 11900-11910.

DOI: 10.1021/ja0348851

Google Scholar

[21] S.W.D. Bailey, I. Amanatidis, C.J. Lambert, Carbon nanotube electron windmills: A novel design for nanomotors, Phys. Rev. Lett. 100 (2008) 256802.

DOI: 10.1103/physrevlett.100.256802

Google Scholar

[22] A. Prokop, J. Vacek, J. Michl, Friction in carborane-based molecular rotors driven by gas flow or electric field: Classical molecular dynamics, Acs Nano, 6 (2012) 1901-1914.

DOI: 10.1021/nn300003x

Google Scholar

[23] K. Kim, X. Xu, J. Guo, D.L. Fan, Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks, Nat. Commun. 5 (2014) 3632.

DOI: 10.1038/ncomms4632

Google Scholar

[24] M.M. Rahman, M.M. Chowdhury, M.K. Alam, Rotating-electric-field-induced carbon-nanotube-based nanomotor in water: A molecular dynamics study, Small, 13 (2017) 1603978.

DOI: 10.1002/smll.201603978

Google Scholar

[25] Z.Y. Fu, D. Liang, S.L. Jiang, P.D. Zhao, K.X. Han, Z. Xu, Effects of radius and length on the nanomotor rotors in aqueous solution driven by the rotating electric field, J. Phys. Chem. C, 123 (2019) 30649.

DOI: 10.1021/acs.jpcc.9b07345

Google Scholar

[26] B.Y. Wang, L. Vukovic, P. Kral, Nanoscale rotary motors driven by electron tunneling. Phys. Rev. Lett. 101 (2008) 186808.

Google Scholar

[27] C.D. Daub, D. Bratko, T. Ali, A. Luzar, Microscopic dynamics of the orientation of a hydrated nanoparticle in an electric field, Phys. Rev. Lett. 103 (2009) 207801.

DOI: 10.1103/physrevlett.103.207801

Google Scholar

[28] X.Q. Guo, J.Y. Su, H.X. Guo, Electric field induced orientation and self-assembly of carbon nanotubes in water, Soft Matter, 8 (2012) 1010-1016.

DOI: 10.1039/c1sm06509b

Google Scholar

[29] K. Cai, P.W. Wu, J. Shi, Z. Zhong, Y.Y. Zhang, CNT-motor driven by competition between thermal fluctuation and REF, Int. J. Mech. Sci. 225 (2022) 107372.

DOI: 10.1016/j.ijmecsci.2022.107372

Google Scholar

[30] Y. Kang, K. Cai, J. Shi, Y. Luo, Y. Zhang, CNT-based nanogun triggered by an electric field, Comp. Mater. Sci. 228 (2023) 112305.

DOI: 10.1016/j.commatsci.2023.112305

Google Scholar

[31] R.D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276 (1997) 917-922.

DOI: 10.1126/science.276.5314.917

Google Scholar

[32] K. Cai, J.Z. Yu, H. Yin, Q.H. Qin, Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes, Nanotechnology, 26 (2015) 095702.

DOI: 10.1088/0957-4484/26/9/095702

Google Scholar

[33] K. Cai, J.Z. Yu, J. Shi, Q.H. Qin, Spectrum of temperature-dependent rotational frequency of the rotor in a thermally driven rotary nanomotor, J. Phys. Chem. C, 121 (2017) 16985.

DOI: 10.1021/acs.jpcc.7b04734

Google Scholar

[34] K. Cai, J. Shi, J.Z. Yu, Q.H. Qin, Dynamic behavior of a rotary nanomotor in argon environments, Sci. Rep. 8 (2018) 3511.

DOI: 10.1038/s41598-018-21694-2

Google Scholar

[35] X. Lin, Q. Han, Molecular dynamic simulation of defect-driven rotary system based on a triple-walled carbon nanotube and graphene, Mol. Simul. 46 (2020) 356-361.

DOI: 10.1080/08927022.2019.1703977

Google Scholar

[36] H. Linke, M.T. Downton, M.J. Zuckermann, Performance characteristics of brownian motors, Chaos, 15 (2005) 026111.

DOI: 10.1063/1.1871432

Google Scholar

[37] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996) 678-680.

DOI: 10.1038/381678a0

Google Scholar

[38] R.S. Ruoff, D.C. Lorents, Mechanical and thermal-properties of carbon nanotubes, Carbon, 33 (1995) 925-930.

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[39] J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, 289 (2000) 602-604.

DOI: 10.1126/science.289.5479.602

Google Scholar

[40] P. Tangney, S.G. Louie, M.L. Cohen, Dynamic sliding friction between concentric carbon nanotubes, Phys. Rev. Lett. 93 (2004) 065503.

DOI: 10.1103/physrevlett.93.065503

Google Scholar

[41] P. Tangney, M.L. Cohen, S.G. Louie, Giant wave-drag enhancement of friction in sliding carbon nanotubes, Phys. Rev. Lett. 97 (2006) 195901.

DOI: 10.1103/physrevlett.97.195901

Google Scholar

[42] J. Servantie, P. Gaspard, Rotational dynamics and friction in double-walled carbon nanotubes, Phys. Rev. Lett. 97 (2006) 186106.

DOI: 10.1103/physrevlett.97.186106

Google Scholar

[43] E.H. Cook, M.J. Buehler, Z.S. Spakovszky, Mechanism of friction in rotating carbon nanotube bearings, J. Mech. Phys. Solids, 61 (2013) 652-673.

DOI: 10.1016/j.jmps.2016.12.003

Google Scholar

[44] R.F. Zhang, Z.Y. Ning, Y.Y. Zhang, Q.S. Zheng, Q. Chen, H.H. Xie, Q. Zhang, W.Z. Qian, F. Wei, Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions, Nat. Nanotechnol. 8 (2013) 912-916.

DOI: 10.1038/nnano.2013.217

Google Scholar

[45] W.L. Guo, Y.F. Guo, H.J. Gao, Q.S. Zheng, W.Y. Zhong, Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes, Phys. Rev. Lett. 91 (2003): 125501.

DOI: 10.1103/physrevlett.91.125501

Google Scholar

[46] Y. Zhao, C.C. Ma, G.H. Chen, Q. Jiang, Energy dissipation mechanisms in carbon nanotube oscillators, Phys.l Rev. Lett. 91 (2003) 175504.

DOI: 10.1103/physrevlett.91.175504

Google Scholar

[47] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (5696): 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[48] C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[49] Y. Yang, K. Cai, J. Shi, Y.M. Xie, Nanotextures from orthogonal graphene ribbons: Thermal stability evaluation, Carbon, 144 (2019) 81-90.

DOI: 10.1016/j.carbon.2018.12.020

Google Scholar

[50] K. Cao, S.Z. Feng, Y. Han, L.B. Gao, T.H. Ly, Z.P. Xu, Y. Lu, Elastic straining of free-standing monolayer graphene, Nat. Commun. 11 (2020) 284.

DOI: 10.1038/s41467-019-14130-0

Google Scholar

[51] H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene, Nature, 318 (1985) 162-163.

DOI: 10.1038/318162a0

Google Scholar

[52] K. Cai, J. Wan, J.Z. Yu, H.F. Cai, Q.H. Qin, Molecular dynamics study on welding a defected graphene by a moving fullerene, Appl. Surf. Sci. 377 (2016) 213-220.

DOI: 10.1016/j.apsusc.2016.03.163

Google Scholar

[53] M. Hayakawa, N. Sunayama, S.I. Takagi, Y. Matsuo, A. Tamaki, S. Yamaguchi, S. Seki, A. Fukazawa, Flattened 1d fragments of fullerene C60 that exhibit robustness toward multi-electron reduction, Nat. Commun. 14 (2023) 2741.

DOI: 10.1038/s41467-023-38300-3

Google Scholar

[54] K. Cai, J.Z. Yu, H. Yin, Q.H. Qin, Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes, Nanotechnology, 26 (2015) 095702.

DOI: 10.1088/0957-4484/26/9/095702

Google Scholar

[55] L. Hou, X. Cui, B. Guan, S. Wang, R. Li, Y. Liu, D. Zhu, J. Zheng, Synthesis of a monolayer fullerene network, Nature, 606 (2022) 507-510.

DOI: 10.1038/s41586-022-04771-5

Google Scholar

[56] S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics, J. Comput. Phys. 117 (1995) 1-19.

Google Scholar

[57] S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia National Laboratories, 2007.

Google Scholar

[58] X. Guo, T. Chang, X. Guo, H. Gao, Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes, Phys. Rev. Lett. 107 (2011) 175504.

DOI: 10.1103/physrevlett.107.105502

Google Scholar

[59] S. Li, Q. Li, R.W. Carpick, P. Gumbsch, X.Z. Liu, X. Ding, J. Sun, J. Li, The evolving quality of frictional contact with graphene, Nature, 539 (2016) 541-545.

DOI: 10.1038/nature20135

Google Scholar

[60] J.W. Jiang, J. Leng, J. Li, Z. Guo, T. Chang, X. Guo, T. Zhang, Twin graphene: A novel two-dimensional semiconducting carbon allotrope, Carbon, 118 (2017) 370-375.

DOI: 10.1016/j.carbon.2017.03.067

Google Scholar

[61] S. Nosé, A unified formulation of the constant temperature molecular-dynamics methods, J. Chem. Phys. 81 (1984) 511-519.

DOI: 10.1063/1.447334

Google Scholar

[62] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31 (1985) 1695-1697.

DOI: 10.1103/physreva.31.1695

Google Scholar

[63] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271.

DOI: 10.1021/j100308a038

Google Scholar

[64] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472-6486.

DOI: 10.1063/1.481208

Google Scholar

[65] J.E. Lennard-Jones, On the determination of molecular fields. Ⅱ. From the equation of state of a gas. In: Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 106 (1924) 463-477.

DOI: 10.1098/rspa.1924.0082

Google Scholar

[66] T Weder, J.H. Walther, R.L. Jaffe, T Halicioglu, P Koumoutsakos. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B, 112(2003): 14090.

DOI: 10.1021/jp8083106

Google Scholar