[1]
S. Wang, Z. Jiang, S. Ouyang, Z. Dai, T. Wang, Internally/Externally bubble-propelled photocatalytic tubular nanomotors for efficient water cleaning, ACS Appl. Mater. 9 (2017) 23974-23982.
DOI: 10.1021/acsami.7b06402
Google Scholar
[2]
T. Liu, M. Yan, S. Zhou, Q. Liang, Y. He, X. Zhang, H. Zeng, J. Liu, B. Kong, Site-selective superassembly of a multilevel asymmetric nanomotor with wavelength-modulated propulsion mechanisms, ACS Nano, 17 (2023) 14871-14882.
DOI: 10.1021/acsnano.3c03346
Google Scholar
[3]
A.K. Pumm, W. Engelen, E. Kopperger, J. Isensee, M. Vogt, V. Kozina, M. Kube, M.N. Honemann, E. Bertosin, M. Langecker, R. Golestanian, F.C. Simmel, H. Dietz, A DNA origami rotary ratchet motor, Nature, 607 (2022) 492-498
DOI: 10.1038/s41586-022-04910-y
Google Scholar
[4]
J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, 289 (2000) 602-604
DOI: 10.1126/science.289.5479.602
Google Scholar
[5]
M. Liu, T. Zentgraf, Y.M. Liu, G. Bartal, X. Zhang, Light-driven nanoscale plasmonic motors, Nat. Nanotechnol. 5 (2010) 570-573.
DOI: 10.1038/nnano.2010.128
Google Scholar
[6]
R.E. Tuzun, D.W. Noid, B.G. Sumpter, Dynamics of a laser-driven molecular motor, Nanotechnology, 6 (1995) 52-63.
DOI: 10.1088/0957-4484/6/2/004
Google Scholar
[7]
M.R. Wilson, J. Sola, A. Carlone, S.M. Goldup, N. Lebrasseur, D.A. Leigh, An autonomous chemically fuelled small-molecule motor, Nature, 534 (2016) 235-240.
DOI: 10.1038/nature18013
Google Scholar
[8]
S. Sanchez, L. Soler, J. Katuri, Chemically powered micro- and nanomotors, Angew. 54 (2015) 1414-1444.
DOI: 10.1002/anie.201406096
Google Scholar
[9]
R. Ibusuki, T. Morishita, A. Furuta, S. Nakayama, M. Yoshio, H. Kojima, K. Oiwa, K. Furuta, Programmable molecular transport achived by engineering protein motors to move on DNA nanotubes, Science, 375 (2022) 1159-1164.
DOI: 10.1126/science.abj5170
Google Scholar
[10]
K. Mo, Y. Zhang, Z. Dong, Y. Yang, X. Ma, B.L. Feringa, D. Zhao, Intrinsically unidirectional chemically fuelled rotary molecular motors, Nature, 609 (2022) 293-298.
DOI: 10.1038/s41586-022-05033-0
Google Scholar
[11]
A. Barreiro, R. Rurali, E.R. Hernández, J. Moser, T. Pichler, L. Forró, A. Bachtold, Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes, Science, 320 (2008) 775-778.
DOI: 10.1126/science.1155559
Google Scholar
[12]
K. Cai, J.Z. Yu, J. Wan, H. Yin, J. Shi, Q.H. Qin, Configuration jumps of rotor in a nanomotor from carbon nanostructures, Carbon, 101 (2016) 168-176.
DOI: 10.1016/j.carbon.2016.01.089
Google Scholar
[13]
J. Shi, Y.H. Li, A.Q. Wang, K. Cai, Rotational behavior of a nanoring protected by argon, Comp. Mater. Sci. 154 (2018) 132-137.
DOI: 10.1016/j.commatsci.2018.07.045
Google Scholar
[14]
J. Shi, A.W. Wang, B. Song, K. Cai, A GHz rotary nanoflake driven by diamond needles: A molecular dynamics study, Mater. Des. 191 (2020) 108593.
DOI: 10.1016/j.matdes.2020.108593
Google Scholar
[15]
H. Li, A.Q. Wang, J. Shi, Y.J. Liu, G. Cheng, Diamond needles actuating triple-walled carbon nanotube to rotate via thermal vibration-induced collision, Int. J. Mol. Sci. 20 (2019) 1140.
DOI: 10.3390/ijms20051140
Google Scholar
[16]
K. Cai, S. Sun, J. Shi, Q.H. Qin, Carbon-nanotube nanomotor driven by graphene origami, Phys. Rev. Appl. 15 (2021) 054017.
DOI: 10.1103/physrevapplied.15.054017
Google Scholar
[17]
A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Rotational actuators based on carbon nanotubes, Nature, 424 (2003) 408-410.
DOI: 10.1038/nature01823
Google Scholar
[18]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[19]
J. Vacek, J. Michl, Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field, PNAS, 98 (2001) 5481-5486.
DOI: 10.1073/pnas.091100598
Google Scholar
[20]
D. Horinek, J. Michl, Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surface, J. Am. Chem. Soc. 125 (2003) 11900-11910.
DOI: 10.1021/ja0348851
Google Scholar
[21]
S.W.D. Bailey, I. Amanatidis, C.J. Lambert, Carbon nanotube electron windmills: A novel design for nanomotors, Phys. Rev. Lett. 100 (2008) 256802.
DOI: 10.1103/physrevlett.100.256802
Google Scholar
[22]
A. Prokop, J. Vacek, J. Michl, Friction in carborane-based molecular rotors driven by gas flow or electric field: Classical molecular dynamics, Acs Nano, 6 (2012) 1901-1914.
DOI: 10.1021/nn300003x
Google Scholar
[23]
K. Kim, X. Xu, J. Guo, D.L. Fan, Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks, Nat. Commun. 5 (2014) 3632.
DOI: 10.1038/ncomms4632
Google Scholar
[24]
M.M. Rahman, M.M. Chowdhury, M.K. Alam, Rotating-electric-field-induced carbon-nanotube-based nanomotor in water: A molecular dynamics study, Small, 13 (2017) 1603978.
DOI: 10.1002/smll.201603978
Google Scholar
[25]
Z.Y. Fu, D. Liang, S.L. Jiang, P.D. Zhao, K.X. Han, Z. Xu, Effects of radius and length on the nanomotor rotors in aqueous solution driven by the rotating electric field, J. Phys. Chem. C, 123 (2019) 30649.
DOI: 10.1021/acs.jpcc.9b07345
Google Scholar
[26]
B.Y. Wang, L. Vukovic, P. Kral, Nanoscale rotary motors driven by electron tunneling. Phys. Rev. Lett. 101 (2008) 186808.
Google Scholar
[27]
C.D. Daub, D. Bratko, T. Ali, A. Luzar, Microscopic dynamics of the orientation of a hydrated nanoparticle in an electric field, Phys. Rev. Lett. 103 (2009) 207801.
DOI: 10.1103/physrevlett.103.207801
Google Scholar
[28]
X.Q. Guo, J.Y. Su, H.X. Guo, Electric field induced orientation and self-assembly of carbon nanotubes in water, Soft Matter, 8 (2012) 1010-1016.
DOI: 10.1039/c1sm06509b
Google Scholar
[29]
K. Cai, P.W. Wu, J. Shi, Z. Zhong, Y.Y. Zhang, CNT-motor driven by competition between thermal fluctuation and REF, Int. J. Mech. Sci. 225 (2022) 107372.
DOI: 10.1016/j.ijmecsci.2022.107372
Google Scholar
[30]
Y. Kang, K. Cai, J. Shi, Y. Luo, Y. Zhang, CNT-based nanogun triggered by an electric field, Comp. Mater. Sci. 228 (2023) 112305.
DOI: 10.1016/j.commatsci.2023.112305
Google Scholar
[31]
R.D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276 (1997) 917-922.
DOI: 10.1126/science.276.5314.917
Google Scholar
[32]
K. Cai, J.Z. Yu, H. Yin, Q.H. Qin, Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes, Nanotechnology, 26 (2015) 095702.
DOI: 10.1088/0957-4484/26/9/095702
Google Scholar
[33]
K. Cai, J.Z. Yu, J. Shi, Q.H. Qin, Spectrum of temperature-dependent rotational frequency of the rotor in a thermally driven rotary nanomotor, J. Phys. Chem. C, 121 (2017) 16985.
DOI: 10.1021/acs.jpcc.7b04734
Google Scholar
[34]
K. Cai, J. Shi, J.Z. Yu, Q.H. Qin, Dynamic behavior of a rotary nanomotor in argon environments, Sci. Rep. 8 (2018) 3511.
DOI: 10.1038/s41598-018-21694-2
Google Scholar
[35]
X. Lin, Q. Han, Molecular dynamic simulation of defect-driven rotary system based on a triple-walled carbon nanotube and graphene, Mol. Simul. 46 (2020) 356-361.
DOI: 10.1080/08927022.2019.1703977
Google Scholar
[36]
H. Linke, M.T. Downton, M.J. Zuckermann, Performance characteristics of brownian motors, Chaos, 15 (2005) 026111.
DOI: 10.1063/1.1871432
Google Scholar
[37]
M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996) 678-680.
DOI: 10.1038/381678a0
Google Scholar
[38]
R.S. Ruoff, D.C. Lorents, Mechanical and thermal-properties of carbon nanotubes, Carbon, 33 (1995) 925-930.
DOI: 10.1016/0008-6223(95)00021-5
Google Scholar
[39]
J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, 289 (2000) 602-604.
DOI: 10.1126/science.289.5479.602
Google Scholar
[40]
P. Tangney, S.G. Louie, M.L. Cohen, Dynamic sliding friction between concentric carbon nanotubes, Phys. Rev. Lett. 93 (2004) 065503.
DOI: 10.1103/physrevlett.93.065503
Google Scholar
[41]
P. Tangney, M.L. Cohen, S.G. Louie, Giant wave-drag enhancement of friction in sliding carbon nanotubes, Phys. Rev. Lett. 97 (2006) 195901.
DOI: 10.1103/physrevlett.97.195901
Google Scholar
[42]
J. Servantie, P. Gaspard, Rotational dynamics and friction in double-walled carbon nanotubes, Phys. Rev. Lett. 97 (2006) 186106.
DOI: 10.1103/physrevlett.97.186106
Google Scholar
[43]
E.H. Cook, M.J. Buehler, Z.S. Spakovszky, Mechanism of friction in rotating carbon nanotube bearings, J. Mech. Phys. Solids, 61 (2013) 652-673.
DOI: 10.1016/j.jmps.2016.12.003
Google Scholar
[44]
R.F. Zhang, Z.Y. Ning, Y.Y. Zhang, Q.S. Zheng, Q. Chen, H.H. Xie, Q. Zhang, W.Z. Qian, F. Wei, Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions, Nat. Nanotechnol. 8 (2013) 912-916.
DOI: 10.1038/nnano.2013.217
Google Scholar
[45]
W.L. Guo, Y.F. Guo, H.J. Gao, Q.S. Zheng, W.Y. Zhong, Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes, Phys. Rev. Lett. 91 (2003): 125501.
DOI: 10.1103/physrevlett.91.125501
Google Scholar
[46]
Y. Zhao, C.C. Ma, G.H. Chen, Q. Jiang, Energy dissipation mechanisms in carbon nanotube oscillators, Phys.l Rev. Lett. 91 (2003) 175504.
DOI: 10.1103/physrevlett.91.175504
Google Scholar
[47]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (5696): 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[48]
C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388.
DOI: 10.1126/science.1157996
Google Scholar
[49]
Y. Yang, K. Cai, J. Shi, Y.M. Xie, Nanotextures from orthogonal graphene ribbons: Thermal stability evaluation, Carbon, 144 (2019) 81-90.
DOI: 10.1016/j.carbon.2018.12.020
Google Scholar
[50]
K. Cao, S.Z. Feng, Y. Han, L.B. Gao, T.H. Ly, Z.P. Xu, Y. Lu, Elastic straining of free-standing monolayer graphene, Nat. Commun. 11 (2020) 284.
DOI: 10.1038/s41467-019-14130-0
Google Scholar
[51]
H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene, Nature, 318 (1985) 162-163.
DOI: 10.1038/318162a0
Google Scholar
[52]
K. Cai, J. Wan, J.Z. Yu, H.F. Cai, Q.H. Qin, Molecular dynamics study on welding a defected graphene by a moving fullerene, Appl. Surf. Sci. 377 (2016) 213-220.
DOI: 10.1016/j.apsusc.2016.03.163
Google Scholar
[53]
M. Hayakawa, N. Sunayama, S.I. Takagi, Y. Matsuo, A. Tamaki, S. Yamaguchi, S. Seki, A. Fukazawa, Flattened 1d fragments of fullerene C60 that exhibit robustness toward multi-electron reduction, Nat. Commun. 14 (2023) 2741.
DOI: 10.1038/s41467-023-38300-3
Google Scholar
[54]
K. Cai, J.Z. Yu, H. Yin, Q.H. Qin, Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes, Nanotechnology, 26 (2015) 095702.
DOI: 10.1088/0957-4484/26/9/095702
Google Scholar
[55]
L. Hou, X. Cui, B. Guan, S. Wang, R. Li, Y. Liu, D. Zhu, J. Zheng, Synthesis of a monolayer fullerene network, Nature, 606 (2022) 507-510.
DOI: 10.1038/s41586-022-04771-5
Google Scholar
[56]
S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics, J. Comput. Phys. 117 (1995) 1-19.
Google Scholar
[57]
S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia National Laboratories, 2007.
Google Scholar
[58]
X. Guo, T. Chang, X. Guo, H. Gao, Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes, Phys. Rev. Lett. 107 (2011) 175504.
DOI: 10.1103/physrevlett.107.105502
Google Scholar
[59]
S. Li, Q. Li, R.W. Carpick, P. Gumbsch, X.Z. Liu, X. Ding, J. Sun, J. Li, The evolving quality of frictional contact with graphene, Nature, 539 (2016) 541-545.
DOI: 10.1038/nature20135
Google Scholar
[60]
J.W. Jiang, J. Leng, J. Li, Z. Guo, T. Chang, X. Guo, T. Zhang, Twin graphene: A novel two-dimensional semiconducting carbon allotrope, Carbon, 118 (2017) 370-375.
DOI: 10.1016/j.carbon.2017.03.067
Google Scholar
[61]
S. Nosé, A unified formulation of the constant temperature molecular-dynamics methods, J. Chem. Phys. 81 (1984) 511-519.
DOI: 10.1063/1.447334
Google Scholar
[62]
W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31 (1985) 1695-1697.
DOI: 10.1103/physreva.31.1695
Google Scholar
[63]
H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271.
DOI: 10.1021/j100308a038
Google Scholar
[64]
S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472-6486.
DOI: 10.1063/1.481208
Google Scholar
[65]
J.E. Lennard-Jones, On the determination of molecular fields. Ⅱ. From the equation of state of a gas. In: Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 106 (1924) 463-477.
DOI: 10.1098/rspa.1924.0082
Google Scholar
[66]
T Weder, J.H. Walther, R.L. Jaffe, T Halicioglu, P Koumoutsakos. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B, 112(2003): 14090.
DOI: 10.1021/jp8083106
Google Scholar