Study on the Photocatalytic Degradation of MB by the ZnO@PDA and ZnO-Ag@PDA

Article Preview

Abstract:

Photocatalysis properties enhanced by metal and organic polymer has been received more interest because of their ability to directly or indirectly degrade pollutants. The effect of PDA (polydopamine) and Ag nanoparticles on the different phases of ZnO to degrade organic dyes under visible and UV-vis light was investigated. ZnO@PDA, ZnO-Ag, and ZnO-Ag@PDA nanoparticles were synthesized. It’s shown that Ag particles with sizes of less than 20 nm were deposited evenly on the ZnO. There were a few changes in the structure of ZnO@PDA or ZnO-Ag @PDA. When the ZnO was coated by PDA, the photocatalytic activity could be enhanced. The photocatalytic activity under UV-vis and visible light of the ZnO@PDA were effectively improved. The degradation rate of ZnO-Ag@PDA was 97.9% under UV-vis light for 20 mins, which was 16.1% higher than that of ZnO. The photocatalytic activity of ZnO-Ag@PDA reached the maximum after polymerizing for 2 hours. The photocatalytic efficiency of ZnO-Ag@PDA-2h under UV-vis for 30 minutes can reach higher than 99.01%. The photocatalytic performance decreased rapidly with the increasing cycles. When the number of cycles was 5, the degradation rate was 65.84%. Afterward, the degradation rate changed small and became stable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-81

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Cai, Z. Wang, Y. Dai, C. Fang, Y. Li, S. Yang, J. Wang, B. Liu, X. Ding, Y.-F. Zhang, Y. Li, L. Wan, Facile preparation of polyurethane sponge decorated with polydopamine/BiVO4 for dye photocatalytic degradation under visible light and oil-water separation, Chemical Engineering Science. 282 (2023) 119213.

DOI: 10.1016/j.ces.2023.119213

Google Scholar

[2] L. Yang, C. Chen, Y. Hu, F. Wei, J. Cui, Y. Zhao, X. Xu, X. Chen, D. Sun, Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation, J. Colloid Interface Sci, 562 (2020) 21-28, hppt://doi.org/.

DOI: 10.1016/j.jcis.2019.12.013

Google Scholar

[3] J. Shi, J. Zhang, Z. Jia, Construction of yolk-shell structural polydopamine@WO3 micro/nanospheres for enhanced photocatalytic degradation, Chemistry Select, 8(2023) 1-10.

DOI: 10.1002/slct.202301084

Google Scholar

[4] I.N. Reddy, C.V. Reddy, J. Shim, B. Akkinepally, M.Y. Cho, K. Yoo, D. Kim, Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation, Catalysis Today, 340 (2020) 277-285, hppt://doi.org/.

DOI: 10.1016/j.cattod.2018.07.030

Google Scholar

[5] A. Yasin, T. Hussain, A.S.A. Imranullah, Photocatalytic and Antibacterial Potential of Chitosan Supported Nickel Oxide/Zinc Oxide Composite Synthesized by Alcohothermal Method, Water, air and soil pollution, 234(2023) 592.1-592.11.

DOI: 10.1007/s11270-023-06596-y

Google Scholar

[6] S. Abinaya, J.P. Nickson, S.A. Jebamary, Ultraviolet-Driven Photocatalytic Degradation of Rhodamine B Using Ag3PO4 Nanoparticles for Sustainable Catalysis, Chemistry Select, 9(2024) e202304937.

DOI: 10.1002/slct.202304937

Google Scholar

[7] P. Kumari, S.Kumar, H.Kaur, et al, A bio-based strategy for efficient industrial wastewater treatment using TiO2 photocatalysis, Interactions, 245(2024) 1-25.

DOI: 10.1007/s10751-024-01918-w

Google Scholar

[8] Q .Fu, X. Wang, Q. Cai, Constructing BiOCl/ZnO heterojunction from Bi-MOF for efficient photocatalytic degradation performance, Inorganic Chemistry Communications, 140(2022) 109445.

DOI: 10.1016/j.inoche.2022.109445

Google Scholar

[9] C.-W. Cui, C. Yang, J. Bao, X.-J. Huang, X.-F. Zeng, J.-F. Chen, Monodispersed ZnO Nanoparticle-Poly(methyl methacrylate) Composites with Visible Transparency for Ultraviolet Shielding Applications, ACS Applied Nano Materials, 3 (2020) 9026-9034, hppt://doi.org/.

DOI: 10.1021/acsanm.0c01723

Google Scholar

[10] Y. Wang, S. Zhang, Y. Ge, C. Wang, J. Hu, H. Liu, Highly Efficient Photocatalytic Degradation of Tetracycline Using a Bimetallic Oxide/Carbon Photocatalyst, Acta Physico-Chimica Sinica, 36 (2020) 1905083-1905080, hppt://doi.org/.

DOI: 10.3866/pku.Whxb201905083

Google Scholar

[11] S.Feng, S.Wang, C. Lei, et al, Photocatalytic Degradation of Antibiotics by S-Scheme Heterojunctions Constructed by Thermally Sheared Flower-Like TiO2-Loaded PDA, Catalysis Letters 153 (2023) 1-12.

DOI: 10.1007/s10562-022-04268-w

Google Scholar

[12] Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation, Chemical Engineering Journal, 260 (2015) 117-125, hppt://doi.org/.

DOI: 10.1016/j.cej.2014.08.072

Google Scholar

[13] S. Kamimura, T. Miyazaki, M. Zhang, Y. Li, T. Tsubota, T. Ohno, (Au@Ag)@Au double shell nanoparticles loaded on rutile TiO2 for photocatalytic decomposition of 2-propanol under visible light irradiation, Applied Catalysis B: Environmental, 180 (2016) 255-262, hppt://doi.org/.

DOI: 10.1016/j.apcatb.2015.06.037

Google Scholar

[14] Z. Zhang, M.Li, H. Wang, ZIF-8 Derived ZnO Decorated with Polydopamine and Au Nanoparticles for Efficient Photocatalytic Degradation of Rhodamine B, Chemistry Select, 6 (2021) 5356-5365.

DOI: 10.1002/slct.202100918

Google Scholar

[15] T. Gan, Y. Li, X.-Z. Wang, X.-T. Wang, C.-W. Wang, Cu2ZnSnS4 @TiO2 p-n heterostructured nanosheet arrays: Controllable hydrothermal synthesis and enhanced visible light-driven photocatalytic activity, Applied Surface Science, 408 (2017) 60-67, hppt://doi.org/.

DOI: 10.1016/j.apsusc.2017.02.255

Google Scholar

[16] T. Chen, L. Zhong, Z. Yang, Z. Mou, L. Liu, Y. Wang, J. Sun, W. Lei, Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility, Chemical Research in Chinese Universities, 36 (2020) 1083-1090, hppt://doi.org/.

DOI: 10.1007/s40242-020-0301-1

Google Scholar

[17] C.W. Kang, Polydopamine-Bi2WO6-Decorated Gauzes as Dual-Functional Membranes for Solar Steam Generation and Photocatalytic Degradation Applications, Polymers, 13(2021) 13244335.

DOI: 10.3390/polym13244335

Google Scholar

[18] N. Zhang, S. Liu, X. Fu, Y.-J. Xu, Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity, The Journal of Physical Chemistry C, 115 (2011) 9136-9145, hppt://doi.org/.

DOI: 10.1021/jp2009989

Google Scholar

[19] D.H. Yu, X. Yu, C. Wang, X.C. Liu, Y. Xing, Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties, ACS Appl Mater Interfaces, 4 (2012) 2781-2787, hppt://doi.org/.

DOI: 10.1021/am3004363

Google Scholar

[20] Z. Liu, G. Liu, X. Hong, Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production, Acta Physico-Chimica Sinica, 35 (2019) 215-222, hppt://doi.org/.

DOI: 10.3866/pku.Whxb201803061

Google Scholar

[21] B. Chen, J. Zhang, Y. Zhang, et al, CQDs/Au NPs modified polysulfone membrane with antibacterial function and photocatalytic activity for degradation of methylene blue, Nano brief reports and reviews, 15(2020) 2050131.

DOI: 10.1142/S1793292020501313

Google Scholar

[22] Y.C. Zhang, M. Yang, G. Zhang, D.D. Dionysiou, HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water, Applied Catalysis B: Environmental, 142-143 (2013) 249-258, hppt://doi.org/.

DOI: 10.1016/j.apcatb.2013.05.023

Google Scholar

[23] L. Yang, M. Lv, Y. Song, K. Yin, X. Wang, X. Cheng, K. Cao, S. Li, C. Wang, Y. Yao, W. Luo, Z. Zou, Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production, Applied Catalysis B: Environmental, 279 (2020) 119341, hppt://doi.org/.

DOI: 10.1016/j.apcatb.2020.119341

Google Scholar

[24] C. Wang, L. Wang, J. Jin, J. Liu, Y. Li, M. Wu, L. Chen, B. Wang, X. Yang, B.-L. Su, Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres, Applied Catalysis B: Environmental, 188 (2016) 351-359, hppt://doi.org/.

DOI: 10.1016/j.apcatb.2016.02.017

Google Scholar

[25] X. Deng, Y. Chen, J. Wen, Y. Xu, J. Zhu, Z. Bian, Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction, Science Bulletin, 65 (2020) 105-112, hppt://doi.org/.

DOI: 10.1016/j.scib.2019.10.020

Google Scholar

[26] M. Fang, X. Tan, Z. Liu, B. Hu, X. Wang, Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism, Research (Wash D.C), 2021 (2021) 9794329, hppt://doi.org/.

DOI: 10.34133/2021/9794329

Google Scholar

[27] S.A. Haladu, K.A. Elsayed, A.A. Manda, et al. ZnO submicron spheres doped with Eu nanoparticles prepared by laser ablation for efficient photocatalytic degradation of an organic dye, Optics and Laser Technology, 180(2025) 111498.

DOI: 10.1016/j.optlastec.2024.111498

Google Scholar

[28] M. Jeevarathinam, I.V. Asharani, Synthesis of CuO, ZnO nanoparticles and CuO-ZnO nanocomposite for enhanced photocatalytic degradation of Rhodamine B: a comparative study, Scientific Reports, 14 (2024) 9718.

DOI: 10.1038/s41598-024-60008-7

Google Scholar

[29] I. Ullah, M.Tariq, A.Z. Abdullah, et al, Photocatalytic Degradation of Methyl Red and Methyl Blue Dyes with Doped-Titanium Dioxide Nanoparticles in the Presence of Peroxymonosulfate Oxidant, International Journal of Environmental Research, 18(2024) 1-16.

DOI: 10.1007/s41742-024-00653-y

Google Scholar

[30] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat Mater, 10 (2011) 911-921, hppt://doi.org/.

DOI: 10.1038/nmat3151

Google Scholar

[31] L. Gang, B.G. Anderson, J.V. Grondelle, R. Santen, Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts, Applied Catalysis B Environmental, 40 (2003) 101-110, hppt://doi.org/.

DOI: 10.1016/S0926-3373(02)00129-7

Google Scholar

[32] T. Zou, X. Xing, Y. Yang, Z. Wang, Z. Wang, R. Zhao, X. Zhang, Y. Wang, Water-soluble ZnO quantum dots modified by (3-aminopropyl)triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water, Journal of Alloys and Compounds, 825 (2020) 153904, hppt://doi.org/.

DOI: 10.1016/j.jallcom.2020.153904

Google Scholar

[33] X. Guan, X. Deng, J. Song, X. Wang, S. Wu, Polydopamine with Tailorable Photoelectrochemical Activities for the Highly Sensitive Immunoassay of Tumor Markers, Anal Chem, 93 (2021) 6763-6769, hppt://doi.org/.

DOI: 10.1021/acs.analchem.1c00504

Google Scholar

[34] M.E. Khan, M.M. Khan, M.H. Cho, Recent progress of metal–graphene nanostructures in photocatalysis, Nanoscale, 10 (2018) 9427-9440, DOI:10.1039.C1038NR03500H.

DOI: 10.1039/c8nr03500h

Google Scholar

[35] H. Han, R. Bai, Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights, Separation and Purification Technology, 73 (2010) 142-150, hppt://doi.org/.

DOI: 10.1016/j.seppur.2010.03.017

Google Scholar

[36] D. Yang, X. Zhao, Y. Chen, W. Wang, Z. Zhou, Z. Zhao, Z. Jiang, Synthesis of g-C3N4 Nanosheet/TiO2 Heterojunctions Inspired by Bioadhesion and Biomineralization Mechanism, Industrial & Engineering Chemistry Research, 58 (2019) 5516-5525, hppt://doi.org/.

DOI: 10.1021/acs.iecr.9b00184

Google Scholar

[37] L. Xia, Y. Yang, Y. Cao, B. Liu, X. Li, X. Chen, H. Song, X. Zhang, B. Gao, J. Fu, Porous N-doped TiO2 nanotubes arrays by reverse oxidation of TiN and their visible-light photocatalytic activity, Surface & Coatings Technology, 365 (2019) 237-241, hppt://doi.org/.

DOI: 10.1016/j.surfcoat.2018.06.033

Google Scholar

[38] W. Zhang, Y. Hu, C. Yan, D. Hong, R. Chen, X. Xue, S. Yang, Y. Tian, Z. Tie, Z. Jin, Surface plasmon resonance enhanced direct Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting, Nanoscale, 11 (2019) 9053-9060, hppt://doi.org/.

DOI: 10.1039/c9nr01732a

Google Scholar

[39] M. Wang, L. Chen, S. Pan, C. Mou, K. Shi, Z. Chen, Molecular evolution and characterization of novel Seneca Valley virus (SVV) strains in South China, Infect Genet Evol, 69 (2019) 1-7, hppt://doi.org/.

DOI: 10.1016/j.meegid.2019.01.004

Google Scholar

[40] S. Chu, Y. Miao, Y. Qian, F. Ke, P. Chen, C. Jiang, X. Chen, Synthesis of uniform layer of TiO2 nanoparticles coated on natural cellulose micrometer-sized fibers through a facile one-step solvothermal method, Cellulose, 26 (2019) 4757-4765, hppt://doi.org/.

DOI: 10.1007/s10570-019-02425-w

Google Scholar