[1]
L. Cai, Z. Wang, Y. Dai, C. Fang, Y. Li, S. Yang, J. Wang, B. Liu, X. Ding, Y.-F. Zhang, Y. Li, L. Wan, Facile preparation of polyurethane sponge decorated with polydopamine/BiVO4 for dye photocatalytic degradation under visible light and oil-water separation, Chemical Engineering Science. 282 (2023) 119213.
DOI: 10.1016/j.ces.2023.119213
Google Scholar
[2]
L. Yang, C. Chen, Y. Hu, F. Wei, J. Cui, Y. Zhao, X. Xu, X. Chen, D. Sun, Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation, J. Colloid Interface Sci, 562 (2020) 21-28, hppt://doi.org/.
DOI: 10.1016/j.jcis.2019.12.013
Google Scholar
[3]
J. Shi, J. Zhang, Z. Jia, Construction of yolk-shell structural polydopamine@WO3 micro/nanospheres for enhanced photocatalytic degradation, Chemistry Select, 8(2023) 1-10.
DOI: 10.1002/slct.202301084
Google Scholar
[4]
I.N. Reddy, C.V. Reddy, J. Shim, B. Akkinepally, M.Y. Cho, K. Yoo, D. Kim, Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation, Catalysis Today, 340 (2020) 277-285, hppt://doi.org/.
DOI: 10.1016/j.cattod.2018.07.030
Google Scholar
[5]
A. Yasin, T. Hussain, A.S.A. Imranullah, Photocatalytic and Antibacterial Potential of Chitosan Supported Nickel Oxide/Zinc Oxide Composite Synthesized by Alcohothermal Method, Water, air and soil pollution, 234(2023) 592.1-592.11.
DOI: 10.1007/s11270-023-06596-y
Google Scholar
[6]
S. Abinaya, J.P. Nickson, S.A. Jebamary, Ultraviolet-Driven Photocatalytic Degradation of Rhodamine B Using Ag3PO4 Nanoparticles for Sustainable Catalysis, Chemistry Select, 9(2024) e202304937.
DOI: 10.1002/slct.202304937
Google Scholar
[7]
P. Kumari, S.Kumar, H.Kaur, et al, A bio-based strategy for efficient industrial wastewater treatment using TiO2 photocatalysis, Interactions, 245(2024) 1-25.
DOI: 10.1007/s10751-024-01918-w
Google Scholar
[8]
Q .Fu, X. Wang, Q. Cai, Constructing BiOCl/ZnO heterojunction from Bi-MOF for efficient photocatalytic degradation performance, Inorganic Chemistry Communications, 140(2022) 109445.
DOI: 10.1016/j.inoche.2022.109445
Google Scholar
[9]
C.-W. Cui, C. Yang, J. Bao, X.-J. Huang, X.-F. Zeng, J.-F. Chen, Monodispersed ZnO Nanoparticle-Poly(methyl methacrylate) Composites with Visible Transparency for Ultraviolet Shielding Applications, ACS Applied Nano Materials, 3 (2020) 9026-9034, hppt://doi.org/.
DOI: 10.1021/acsanm.0c01723
Google Scholar
[10]
Y. Wang, S. Zhang, Y. Ge, C. Wang, J. Hu, H. Liu, Highly Efficient Photocatalytic Degradation of Tetracycline Using a Bimetallic Oxide/Carbon Photocatalyst, Acta Physico-Chimica Sinica, 36 (2020) 1905083-1905080, hppt://doi.org/.
DOI: 10.3866/pku.Whxb201905083
Google Scholar
[11]
S.Feng, S.Wang, C. Lei, et al, Photocatalytic Degradation of Antibiotics by S-Scheme Heterojunctions Constructed by Thermally Sheared Flower-Like TiO2-Loaded PDA, Catalysis Letters 153 (2023) 1-12.
DOI: 10.1007/s10562-022-04268-w
Google Scholar
[12]
Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation, Chemical Engineering Journal, 260 (2015) 117-125, hppt://doi.org/.
DOI: 10.1016/j.cej.2014.08.072
Google Scholar
[13]
S. Kamimura, T. Miyazaki, M. Zhang, Y. Li, T. Tsubota, T. Ohno, (Au@Ag)@Au double shell nanoparticles loaded on rutile TiO2 for photocatalytic decomposition of 2-propanol under visible light irradiation, Applied Catalysis B: Environmental, 180 (2016) 255-262, hppt://doi.org/.
DOI: 10.1016/j.apcatb.2015.06.037
Google Scholar
[14]
Z. Zhang, M.Li, H. Wang, ZIF-8 Derived ZnO Decorated with Polydopamine and Au Nanoparticles for Efficient Photocatalytic Degradation of Rhodamine B, Chemistry Select, 6 (2021) 5356-5365.
DOI: 10.1002/slct.202100918
Google Scholar
[15]
T. Gan, Y. Li, X.-Z. Wang, X.-T. Wang, C.-W. Wang, Cu2ZnSnS4 @TiO2 p-n heterostructured nanosheet arrays: Controllable hydrothermal synthesis and enhanced visible light-driven photocatalytic activity, Applied Surface Science, 408 (2017) 60-67, hppt://doi.org/.
DOI: 10.1016/j.apsusc.2017.02.255
Google Scholar
[16]
T. Chen, L. Zhong, Z. Yang, Z. Mou, L. Liu, Y. Wang, J. Sun, W. Lei, Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility, Chemical Research in Chinese Universities, 36 (2020) 1083-1090, hppt://doi.org/.
DOI: 10.1007/s40242-020-0301-1
Google Scholar
[17]
C.W. Kang, Polydopamine-Bi2WO6-Decorated Gauzes as Dual-Functional Membranes for Solar Steam Generation and Photocatalytic Degradation Applications, Polymers, 13(2021) 13244335.
DOI: 10.3390/polym13244335
Google Scholar
[18]
N. Zhang, S. Liu, X. Fu, Y.-J. Xu, Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity, The Journal of Physical Chemistry C, 115 (2011) 9136-9145, hppt://doi.org/.
DOI: 10.1021/jp2009989
Google Scholar
[19]
D.H. Yu, X. Yu, C. Wang, X.C. Liu, Y. Xing, Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties, ACS Appl Mater Interfaces, 4 (2012) 2781-2787, hppt://doi.org/.
DOI: 10.1021/am3004363
Google Scholar
[20]
Z. Liu, G. Liu, X. Hong, Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production, Acta Physico-Chimica Sinica, 35 (2019) 215-222, hppt://doi.org/.
DOI: 10.3866/pku.Whxb201803061
Google Scholar
[21]
B. Chen, J. Zhang, Y. Zhang, et al, CQDs/Au NPs modified polysulfone membrane with antibacterial function and photocatalytic activity for degradation of methylene blue, Nano brief reports and reviews, 15(2020) 2050131.
DOI: 10.1142/S1793292020501313
Google Scholar
[22]
Y.C. Zhang, M. Yang, G. Zhang, D.D. Dionysiou, HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water, Applied Catalysis B: Environmental, 142-143 (2013) 249-258, hppt://doi.org/.
DOI: 10.1016/j.apcatb.2013.05.023
Google Scholar
[23]
L. Yang, M. Lv, Y. Song, K. Yin, X. Wang, X. Cheng, K. Cao, S. Li, C. Wang, Y. Yao, W. Luo, Z. Zou, Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production, Applied Catalysis B: Environmental, 279 (2020) 119341, hppt://doi.org/.
DOI: 10.1016/j.apcatb.2020.119341
Google Scholar
[24]
C. Wang, L. Wang, J. Jin, J. Liu, Y. Li, M. Wu, L. Chen, B. Wang, X. Yang, B.-L. Su, Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres, Applied Catalysis B: Environmental, 188 (2016) 351-359, hppt://doi.org/.
DOI: 10.1016/j.apcatb.2016.02.017
Google Scholar
[25]
X. Deng, Y. Chen, J. Wen, Y. Xu, J. Zhu, Z. Bian, Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction, Science Bulletin, 65 (2020) 105-112, hppt://doi.org/.
DOI: 10.1016/j.scib.2019.10.020
Google Scholar
[26]
M. Fang, X. Tan, Z. Liu, B. Hu, X. Wang, Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism, Research (Wash D.C), 2021 (2021) 9794329, hppt://doi.org/.
DOI: 10.34133/2021/9794329
Google Scholar
[27]
S.A. Haladu, K.A. Elsayed, A.A. Manda, et al. ZnO submicron spheres doped with Eu nanoparticles prepared by laser ablation for efficient photocatalytic degradation of an organic dye, Optics and Laser Technology, 180(2025) 111498.
DOI: 10.1016/j.optlastec.2024.111498
Google Scholar
[28]
M. Jeevarathinam, I.V. Asharani, Synthesis of CuO, ZnO nanoparticles and CuO-ZnO nanocomposite for enhanced photocatalytic degradation of Rhodamine B: a comparative study, Scientific Reports, 14 (2024) 9718.
DOI: 10.1038/s41598-024-60008-7
Google Scholar
[29]
I. Ullah, M.Tariq, A.Z. Abdullah, et al, Photocatalytic Degradation of Methyl Red and Methyl Blue Dyes with Doped-Titanium Dioxide Nanoparticles in the Presence of Peroxymonosulfate Oxidant, International Journal of Environmental Research, 18(2024) 1-16.
DOI: 10.1007/s41742-024-00653-y
Google Scholar
[30]
S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat Mater, 10 (2011) 911-921, hppt://doi.org/.
DOI: 10.1038/nmat3151
Google Scholar
[31]
L. Gang, B.G. Anderson, J.V. Grondelle, R. Santen, Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts, Applied Catalysis B Environmental, 40 (2003) 101-110, hppt://doi.org/.
DOI: 10.1016/S0926-3373(02)00129-7
Google Scholar
[32]
T. Zou, X. Xing, Y. Yang, Z. Wang, Z. Wang, R. Zhao, X. Zhang, Y. Wang, Water-soluble ZnO quantum dots modified by (3-aminopropyl)triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water, Journal of Alloys and Compounds, 825 (2020) 153904, hppt://doi.org/.
DOI: 10.1016/j.jallcom.2020.153904
Google Scholar
[33]
X. Guan, X. Deng, J. Song, X. Wang, S. Wu, Polydopamine with Tailorable Photoelectrochemical Activities for the Highly Sensitive Immunoassay of Tumor Markers, Anal Chem, 93 (2021) 6763-6769, hppt://doi.org/.
DOI: 10.1021/acs.analchem.1c00504
Google Scholar
[34]
M.E. Khan, M.M. Khan, M.H. Cho, Recent progress of metal–graphene nanostructures in photocatalysis, Nanoscale, 10 (2018) 9427-9440, DOI:10.1039.C1038NR03500H.
DOI: 10.1039/c8nr03500h
Google Scholar
[35]
H. Han, R. Bai, Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights, Separation and Purification Technology, 73 (2010) 142-150, hppt://doi.org/.
DOI: 10.1016/j.seppur.2010.03.017
Google Scholar
[36]
D. Yang, X. Zhao, Y. Chen, W. Wang, Z. Zhou, Z. Zhao, Z. Jiang, Synthesis of g-C3N4 Nanosheet/TiO2 Heterojunctions Inspired by Bioadhesion and Biomineralization Mechanism, Industrial & Engineering Chemistry Research, 58 (2019) 5516-5525, hppt://doi.org/.
DOI: 10.1021/acs.iecr.9b00184
Google Scholar
[37]
L. Xia, Y. Yang, Y. Cao, B. Liu, X. Li, X. Chen, H. Song, X. Zhang, B. Gao, J. Fu, Porous N-doped TiO2 nanotubes arrays by reverse oxidation of TiN and their visible-light photocatalytic activity, Surface & Coatings Technology, 365 (2019) 237-241, hppt://doi.org/.
DOI: 10.1016/j.surfcoat.2018.06.033
Google Scholar
[38]
W. Zhang, Y. Hu, C. Yan, D. Hong, R. Chen, X. Xue, S. Yang, Y. Tian, Z. Tie, Z. Jin, Surface plasmon resonance enhanced direct Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting, Nanoscale, 11 (2019) 9053-9060, hppt://doi.org/.
DOI: 10.1039/c9nr01732a
Google Scholar
[39]
M. Wang, L. Chen, S. Pan, C. Mou, K. Shi, Z. Chen, Molecular evolution and characterization of novel Seneca Valley virus (SVV) strains in South China, Infect Genet Evol, 69 (2019) 1-7, hppt://doi.org/.
DOI: 10.1016/j.meegid.2019.01.004
Google Scholar
[40]
S. Chu, Y. Miao, Y. Qian, F. Ke, P. Chen, C. Jiang, X. Chen, Synthesis of uniform layer of TiO2 nanoparticles coated on natural cellulose micrometer-sized fibers through a facile one-step solvothermal method, Cellulose, 26 (2019) 4757-4765, hppt://doi.org/.
DOI: 10.1007/s10570-019-02425-w
Google Scholar