Enhanced Synthesis of Copper Ferrite Magnetic Nanoparticles via Polymer-Assisted Sol-Gel Autocombustion Method for Magnetic Hyperthermia Applications

Article Preview

Abstract:

In this study, CuFe2O4 nanoparticles with an average crystallite size of approximately 10 nm were produced using the sol-gel autocombustion method. The synthesis was conducted in the presence of polymers with varying monomer counts, aiming to optimize the magnetic properties for possible localized magnetic heating applications. Comprehensive characterization of all samples was conducted using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Mössbauer spectroscopy. All synthesized samples exhibited good colloidal stability, with zeta potentials around -18.49mV, +3mV and +24 to +30 mV. The Specific Absorption Rate (SAR) of the synthesized nanoparticles was assessed using the calorimetric method. The SAR values were calculated using both the Initial Slope and the Box-Lucas methods. For the sample synthesized using citric acid, the SAR values were 12.6 W/g and 13.23 W/g, respectively. For samples synthesized using polyethylene glycol, the SAR values ranged from 3 to 7 W/g. The parameters of the alternating magnetic field were 33.3 kA/m and 357 kHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-116

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. F. Akhtar, A. Afzaal, A. Saleem, A. Roheel, M. I. Khan, & M. Imran, A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Medical Oncology (Northwood, London, England), 41(2). (2024).

DOI: 10.1007/s12032-023-02277-2

Google Scholar

[2] A. Ibrahim Ghoneim, Applications of nano-ferrites in medicine. In Applications of Ferrites. IntechOpen. (2024).

DOI: 10.5772/intechopen.1003615

Google Scholar

[3] D. Balkose, A.C. Faria Ribeiro, N. Kalarikkal, A. R. Abraham, & A. K. Haghi, Physics and mechanics of new materials: Synthesis, processing, and emerging applications. Apple Academic Press. (2024).

DOI: 10.1201/9781003487760

Google Scholar

[4] D. Lachowicz et al., Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating, J. Mater. Chem. B Mater. Biol. Med., 7(18) (2019) 2962–2973.

DOI: 10.1039/c9tb00029a

Google Scholar

[5] J. M. Gonçalves et al., Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review, Anal. Chim. Acta, 1233 (2022) 340362.

DOI: 10.1016/j.aca.2022.340362

Google Scholar

[6] M. Hodlevska et al., Hydrothermally synthesized NiFe2O4/rGO composites: structure, morphology and electrical conductivity, Appl. Nanosci., 13(7) (2023) 5199–5209.

DOI: 10.1007/s13204-022-02741-x

Google Scholar

[7] O.M. Uhorchuk, V.V. Uhorchuk, M.V. Karpets et al. Lithium ferrite as the cathode of the electrochemical power sources: The perspectives of sol-gel synthesis method. Metallofizika i Noveishie Tekhnologii. 36(1) (2015) 89 – 102.

Google Scholar

[8] F. A. Sheikh, H. M. N. ul H. K Asghar, M. Khalid, Z.A. Gilani, S. M. Ali, Magnetically tuned Ni0.3Co0.7DyxFe2–xO4 ferrites for high-density data storage applications. Applied Physics. A, Materials Science & Processing, 130(1). (2024).

DOI: 10.1007/s00339-023-07224-6

Google Scholar

[9] J. Mazurenko et al., The influence of reaction medium pH on the structure, optical, and mechanical properties of nanosized cu-Fe ferrite synthesized by the sol-gel autocombustion method, J. Nano Res., 81 (2023) 65–84.

DOI: 10.4028/p-d2fqah

Google Scholar

[10] Z. Ye, Z. Deng, L. Zhang, J. Chen, G. Wang, and Z. Wu, The structure of copper ferrite prepared by five methods and its catalytic activity on lignin oxidative degradation, Mater. Res. Express, 7(3) (2020) 035007.

DOI: 10.1088/2053-1591/ab778b

Google Scholar

[11] N. Masunga, B. B. Mamba, Y. W. Getahun, A. A. El-Gendy, and K. K. Kefeni, Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 272 (2021) 115368.

DOI: 10.1016/j.mseb.2021.115368

Google Scholar

[12] A. Subha, M. G. Shalini, B. N. Sahu, S. Rout, and S. C. Sahoo, Role of surface defects and anisotropy variation on magnetic properties of copper ferrite nanoparticles prepared by co-precipitation method, Mater. Chem. Phys., 286 (2022) 126212.

DOI: 10.1016/j.matchemphys.2022.126212

Google Scholar

[13] J. Hwang, M. Choi, H.-S. Shin, B.-K. Ju, and M. Chun, Structural and magnetic properties of NiZn ferrite nanoparticles synthesized by a thermal decomposition method, Appl. Sci. (Basel), 10(18) (2020) 6279.

DOI: 10.3390/app10186279

Google Scholar

[14] A. Zeleňáková, Ľ. Nagy, P. Hrubovčák, M. Barutiak, M. Lisnichuk, V. Huntošová, D. Zákutná, Cobalt-ferrite nano-cubes for magnetic hyperthermia applications. Journal of Alloys and Compounds, 989(174415), 174415. (2024).

DOI: 10.1016/j.jallcom.2024.174415

Google Scholar

[15] R. Singh Yadav et al., Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles, Ultrason. Sonochem., 61 (2020) 104839.

DOI: 10.1016/j.ultsonch.2019.104839

Google Scholar

[16] F. Majid et al., Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics, Mater. Chem. Phys., 258 (2021) 123888.

DOI: 10.1016/j.matchemphys.2020.123888

Google Scholar

[17] R. Abbasian, Z. Lorfasaei, M. Shayesteh, and M. S. Afarani, Synthesis of cobalt ferrite colloidal nanoparticle clusters by ultrasonic-assisted solvothermal process, J. Aust. Ceram. Soc., 56(3) (2020) 1119–1126.

DOI: 10.1007/s41779-020-00456-2

Google Scholar

[18] M. S. Al Maashani, K. A. Khalaf, A. M. Gismelseed, and I. A. Al-Omari, The structural and magnetic properties of the nano-CoFe2O4 ferrite prepared by sol-gel auto-combustion technique, J. Alloys Compd., 817 (2020) 152786.

DOI: 10.1016/j.jallcom.2019.152786

Google Scholar

[19] J. Mazurenko et al., Study of Li-Al ferrites by nuclear magnetic resonance, UV-spectroscopy, and mossbauer spectroscopy, J. Nano- Electron. Phys., 15(2) (2023) 02020-1–9.

Google Scholar

[20] N. Masunga, O. K. Mmelesi, K. K. Kefeni, and B. B. Mamba, Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: Review, J. Environ. Chem. Eng., 7(3) (2019) 103179.

DOI: 10.1016/j.jece.2019.103179

Google Scholar

[21] A. Nigam and S. J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications, Ceram. Int., 46(4) (2020) 4058–4064.

DOI: 10.1016/j.ceramint.2019.10.243

Google Scholar

[22] X. Cao, Zinc ferrite nanoparticles: simple synthesis via lyophilisation and electrochemical application as glucose biosensor, Nano Ex., 2(2) (2021) 024001.

DOI: 10.1088/2632-959x/abfdd2

Google Scholar

[23] J. A. Stoll et al., Synthesis of manganese zinc ferrite nanoparticles in medical-grade silicone for MRI applications, Int. J. Mol. Sci., 24(6) (2023) 5685.

Google Scholar

[24] S. Fayazzadeh, M. Khodaei, M. Arani, S. R. Mahdavi, T. Nizamov, and A. Majouga, Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method, J. Supercond. Nov. Magn., 33(7) (2020) 2227–2233.

DOI: 10.1007/s10948-020-05490-6

Google Scholar

[25] M. Peiravi, H. Eslami, M. Ansari, and H. Zare-Zardini, Magnetic hyperthermia: Potentials and limitations, J. Indian Chem. Soc., 99(1) (2022) 100269.

DOI: 10.1016/j.jics.2021.100269

Google Scholar

[26] D. Liu et al., Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy, Theranostics, 10(3) (2020) 1181–1196.

DOI: 10.7150/thno.38989

Google Scholar

[27] V. Vilas-Boas, F. Carvalho, and B. Espiña, Magnetic hyperthermia for cancer treatment: Main parameters affecting the outcome of in vitro and in vivo studies, Molecules, 25(12) (2020) 2874.

DOI: 10.3390/molecules25122874

Google Scholar

[28] G. P. Skandalakis et al., Hyperthermia treatment advances for brain tumors, Int. J. Hyperthermia, 37(2) (2020) 3–19.

Google Scholar

[29] S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung, and N. T. K. Thanh, Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment, Nano Today, 29 (2019) 100795.

DOI: 10.1016/j.nantod.2019.100795

Google Scholar

[30] K. Momma and F. Izumi, VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44(6) (2011) 1272–1276.

DOI: 10.1107/s0021889811038970

Google Scholar

[31] M. Basak, M. L. Rahman, M. F. Ahmed, B. Biswas, and N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach, J. Alloys Compd., 895 (2022) 162694.

DOI: 10.1016/j.jallcom.2021.162694

Google Scholar

[32] R. S. Shitole et al., Williamson-Hall strain analysis, cation distribution and magnetic interactions in Dy3+ substituted zinc-chromium ferrite, J. Magn. Magn. Mater., 588 (2023) 171468.

DOI: 10.1016/j.jmmm.2023.171468

Google Scholar

[33] S.N. Rishikeshi, S.S. Joshi, M. K. Temgire, and J. R. Bellare, Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different?, Dalton Trans., 42(15) (2013) 5430.

DOI: 10.1039/c2dt32026f

Google Scholar

[34] H. Jalili, B. Aslibeiki, A. Ghotbi Varzaneh, and V. A. Chernenko, The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles, Beilstein J. Nanotechnol., 10 (2019) 1348–1359.

DOI: 10.3762/bjnano.10.133

Google Scholar

[35] R. K. Selvan, C. O. Augustin, L. J. Berchmans, and R. Saraswathi, Combustion synthesis of CuFe2O4, Mater. Res. Bull., 38(1) (2003) 41–54.

DOI: 10.1016/s0025-5408(02)01004-8

Google Scholar

[36] R. Jain, & S. Gulati, Influence of Fe2+ substitution on FTIR and Raman spectra of Mn ferrite nanoparticles. Vibrational Spectroscopy, 126(103540), (2023). 103540.

DOI: 10.1016/j.vibspec.2023.103540

Google Scholar

[37] S. M. Ansari, D. Phase, Y. D. Kolekar, & C. V. Ramana, Effect of Manganese-Doping on the chemical and optical properties of cobalt ferrite nanoparticles. Materials Science & Engineering. B, Solid-State Materials for Advanced Technology, 300(117134), (2024). 117134.

DOI: 10.1016/j.mseb.2023.117134

Google Scholar

[38] A. Ahlawat, V. G. Sathe, V. R. Reddy, and A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method, J. Magn. Magn. Mater., 323(15) (2011) 2049–2054.

DOI: 10.1016/j.jmmm.2011.03.017

Google Scholar

[39] D.V. Kurmude, C.M. Kale, P. S. Aghav, D. R. Shengule, and K. M. Jadhav, Superparamagnetic behavior of zinc-substituted nickel ferrite nanoparticles and its effect on mossbauer and magnetic parameters, J. Supercond. Nov. Magn., 27(8) (2014) 1889–1897.

DOI: 10.1007/s10948-014-2535-y

Google Scholar

[40] Clogston, Jeffrey D., and Anil K. Patri. Zeta Potential Measurement. Methods in Molecular Biology, 63–70. Totowa, NJ: Humana Press, 2011.

Google Scholar

[41] V. Springer, E. Pecini, and M. Avena, Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions, J. Environ. Chem. Eng., 4(4) (2016) 3882–3890.

DOI: 10.1016/j.jece.2016.08.026

Google Scholar

[42] Y. Mozhdehbakhsh Mofrad, S. Asiaei, H. Shaygani, & S. S. Salehi, Investigating the effect of magnetic field and nanoparticles characteristics in the treatment of glioblastoma by magnetic hyperthermia method: An in silico study. Results in Engineering, 23(102473), (2024). 102473.

DOI: 10.1016/j.rineng.2024.102473

Google Scholar

[43] J. Gong, J. Hu, X. Yan, L. Xiang, S. Chen, Y. Lu. Injectable hydrogels including magnetic nanosheets for multidisciplinary treatment of hepatocellular carcinoma via magnetic hyperthermia. Small, 20(3). (2024).

DOI: 10.1002/smll.202300733

Google Scholar

[44] R. Gupta, A. Chauhan, T. Kaur, B. K. Kuanr, & D. Sharma, Enhancing magnetic hyperthermia efficacy through targeted heat shock protein 90 inhibition: Unveiling immune-mediated therapeutic synergy in glioma treatment. ACS Nano, 18(26), (2024). 17145–17161.

DOI: 10.1021/acsnano.4c03887

Google Scholar

[45] G. Barrera et al., Specific loss power of co/Li/Zn-mixed ferrite powders for magnetic hyperthermia, Sensors (Basel), 20(7) (2020) 2151.

DOI: 10.3390/s20072151

Google Scholar

[46] R. M. Patil, N. D. Thorat, P. B. Shete, S. V. Otari, B. M. Tiwale, and S. H. Pawar, In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures, Mater. Sci. Eng. C Mater. Biol. Appl., 59 (2016) 702–709.

DOI: 10.1016/j.msec.2015.10.064

Google Scholar

[47] S. He et al., Maximizing specific loss power for magnetic hyperthermia by hard–soft mixed ferrites, Small, 14(29) (2018).

DOI: 10.1002/smll.201870133

Google Scholar

[48] E. Deatsch and B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater., 354 (2014) 163–172.

DOI: 10.1016/j.jmmm.2013.11.006

Google Scholar

[49] S. Kumari, M. K. Manglam, L. K. Pradhan, L. Kumar, J. P. Borah, and M. Kar, Modification in crystal structure of copper ferrite fiber by annealing and its hyperthermia application, Appl. Phys. A Mater. Sci. Process., 127(4) (2021).

DOI: 10.1007/s00339-021-04429-5

Google Scholar

[50] S. M. Fotukian, A. Barati, M. Soleymani, and A. M. Alizadeh, Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application, J. Alloys Compd., 816 (2020) 152548.

DOI: 10.1016/j.jallcom.2019.152548

Google Scholar

[51] M. P. Ghosh, N. J. Mondal, R. Sonkar, B. Boro, J. P. Borah, and D. Chowdhury, Sm doped cu–Ni spinel ferrite nanoparticles for hyperthermia and photocatalytic applications, ACS Appl. Nano Mater., 7(7) (2024) 7028–7042.

DOI: 10.1021/acsanm.3c06144

Google Scholar

[52] K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, and B. Al-Najar, Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies, J. Phys. Chem. Solids, 115 (2018) 162–171.

DOI: 10.1016/j.jpcs.2017.12.024

Google Scholar

[53] R. Eivazzadeh-Keihan et al., Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications, Langmuir, 37(29) (2021) 8847–8854.

DOI: 10.1021/acs.langmuir.1c01251

Google Scholar

[54] C. Papadopoulos, et al. Magnetic Fluid Hyperthermia Simulations in Evaluation of SAR Calculation Methods. Physica Medica: PM: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB) 71 (2020) 39–52.

DOI: 10.1016/j.ejmp.2020.02.011

Google Scholar