[1]
M. F. Akhtar, A. Afzaal, A. Saleem, A. Roheel, M. I. Khan, & M. Imran, A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Medical Oncology (Northwood, London, England), 41(2). (2024).
DOI: 10.1007/s12032-023-02277-2
Google Scholar
[2]
A. Ibrahim Ghoneim, Applications of nano-ferrites in medicine. In Applications of Ferrites. IntechOpen. (2024).
DOI: 10.5772/intechopen.1003615
Google Scholar
[3]
D. Balkose, A.C. Faria Ribeiro, N. Kalarikkal, A. R. Abraham, & A. K. Haghi, Physics and mechanics of new materials: Synthesis, processing, and emerging applications. Apple Academic Press. (2024).
DOI: 10.1201/9781003487760
Google Scholar
[4]
D. Lachowicz et al., Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating, J. Mater. Chem. B Mater. Biol. Med., 7(18) (2019) 2962–2973.
DOI: 10.1039/c9tb00029a
Google Scholar
[5]
J. M. Gonçalves et al., Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review, Anal. Chim. Acta, 1233 (2022) 340362.
DOI: 10.1016/j.aca.2022.340362
Google Scholar
[6]
M. Hodlevska et al., Hydrothermally synthesized NiFe2O4/rGO composites: structure, morphology and electrical conductivity, Appl. Nanosci., 13(7) (2023) 5199–5209.
DOI: 10.1007/s13204-022-02741-x
Google Scholar
[7]
O.M. Uhorchuk, V.V. Uhorchuk, M.V. Karpets et al. Lithium ferrite as the cathode of the electrochemical power sources: The perspectives of sol-gel synthesis method. Metallofizika i Noveishie Tekhnologii. 36(1) (2015) 89 – 102.
Google Scholar
[8]
F. A. Sheikh, H. M. N. ul H. K Asghar, M. Khalid, Z.A. Gilani, S. M. Ali, Magnetically tuned Ni0.3Co0.7DyxFe2–xO4 ferrites for high-density data storage applications. Applied Physics. A, Materials Science & Processing, 130(1). (2024).
DOI: 10.1007/s00339-023-07224-6
Google Scholar
[9]
J. Mazurenko et al., The influence of reaction medium pH on the structure, optical, and mechanical properties of nanosized cu-Fe ferrite synthesized by the sol-gel autocombustion method, J. Nano Res., 81 (2023) 65–84.
DOI: 10.4028/p-d2fqah
Google Scholar
[10]
Z. Ye, Z. Deng, L. Zhang, J. Chen, G. Wang, and Z. Wu, The structure of copper ferrite prepared by five methods and its catalytic activity on lignin oxidative degradation, Mater. Res. Express, 7(3) (2020) 035007.
DOI: 10.1088/2053-1591/ab778b
Google Scholar
[11]
N. Masunga, B. B. Mamba, Y. W. Getahun, A. A. El-Gendy, and K. K. Kefeni, Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 272 (2021) 115368.
DOI: 10.1016/j.mseb.2021.115368
Google Scholar
[12]
A. Subha, M. G. Shalini, B. N. Sahu, S. Rout, and S. C. Sahoo, Role of surface defects and anisotropy variation on magnetic properties of copper ferrite nanoparticles prepared by co-precipitation method, Mater. Chem. Phys., 286 (2022) 126212.
DOI: 10.1016/j.matchemphys.2022.126212
Google Scholar
[13]
J. Hwang, M. Choi, H.-S. Shin, B.-K. Ju, and M. Chun, Structural and magnetic properties of NiZn ferrite nanoparticles synthesized by a thermal decomposition method, Appl. Sci. (Basel), 10(18) (2020) 6279.
DOI: 10.3390/app10186279
Google Scholar
[14]
A. Zeleňáková, Ľ. Nagy, P. Hrubovčák, M. Barutiak, M. Lisnichuk, V. Huntošová, D. Zákutná, Cobalt-ferrite nano-cubes for magnetic hyperthermia applications. Journal of Alloys and Compounds, 989(174415), 174415. (2024).
DOI: 10.1016/j.jallcom.2024.174415
Google Scholar
[15]
R. Singh Yadav et al., Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles, Ultrason. Sonochem., 61 (2020) 104839.
DOI: 10.1016/j.ultsonch.2019.104839
Google Scholar
[16]
F. Majid et al., Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics, Mater. Chem. Phys., 258 (2021) 123888.
DOI: 10.1016/j.matchemphys.2020.123888
Google Scholar
[17]
R. Abbasian, Z. Lorfasaei, M. Shayesteh, and M. S. Afarani, Synthesis of cobalt ferrite colloidal nanoparticle clusters by ultrasonic-assisted solvothermal process, J. Aust. Ceram. Soc., 56(3) (2020) 1119–1126.
DOI: 10.1007/s41779-020-00456-2
Google Scholar
[18]
M. S. Al Maashani, K. A. Khalaf, A. M. Gismelseed, and I. A. Al-Omari, The structural and magnetic properties of the nano-CoFe2O4 ferrite prepared by sol-gel auto-combustion technique, J. Alloys Compd., 817 (2020) 152786.
DOI: 10.1016/j.jallcom.2019.152786
Google Scholar
[19]
J. Mazurenko et al., Study of Li-Al ferrites by nuclear magnetic resonance, UV-spectroscopy, and mossbauer spectroscopy, J. Nano- Electron. Phys., 15(2) (2023) 02020-1–9.
Google Scholar
[20]
N. Masunga, O. K. Mmelesi, K. K. Kefeni, and B. B. Mamba, Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: Review, J. Environ. Chem. Eng., 7(3) (2019) 103179.
DOI: 10.1016/j.jece.2019.103179
Google Scholar
[21]
A. Nigam and S. J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications, Ceram. Int., 46(4) (2020) 4058–4064.
DOI: 10.1016/j.ceramint.2019.10.243
Google Scholar
[22]
X. Cao, Zinc ferrite nanoparticles: simple synthesis via lyophilisation and electrochemical application as glucose biosensor, Nano Ex., 2(2) (2021) 024001.
DOI: 10.1088/2632-959x/abfdd2
Google Scholar
[23]
J. A. Stoll et al., Synthesis of manganese zinc ferrite nanoparticles in medical-grade silicone for MRI applications, Int. J. Mol. Sci., 24(6) (2023) 5685.
Google Scholar
[24]
S. Fayazzadeh, M. Khodaei, M. Arani, S. R. Mahdavi, T. Nizamov, and A. Majouga, Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method, J. Supercond. Nov. Magn., 33(7) (2020) 2227–2233.
DOI: 10.1007/s10948-020-05490-6
Google Scholar
[25]
M. Peiravi, H. Eslami, M. Ansari, and H. Zare-Zardini, Magnetic hyperthermia: Potentials and limitations, J. Indian Chem. Soc., 99(1) (2022) 100269.
DOI: 10.1016/j.jics.2021.100269
Google Scholar
[26]
D. Liu et al., Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy, Theranostics, 10(3) (2020) 1181–1196.
DOI: 10.7150/thno.38989
Google Scholar
[27]
V. Vilas-Boas, F. Carvalho, and B. Espiña, Magnetic hyperthermia for cancer treatment: Main parameters affecting the outcome of in vitro and in vivo studies, Molecules, 25(12) (2020) 2874.
DOI: 10.3390/molecules25122874
Google Scholar
[28]
G. P. Skandalakis et al., Hyperthermia treatment advances for brain tumors, Int. J. Hyperthermia, 37(2) (2020) 3–19.
Google Scholar
[29]
S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung, and N. T. K. Thanh, Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment, Nano Today, 29 (2019) 100795.
DOI: 10.1016/j.nantod.2019.100795
Google Scholar
[30]
K. Momma and F. Izumi, VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44(6) (2011) 1272–1276.
DOI: 10.1107/s0021889811038970
Google Scholar
[31]
M. Basak, M. L. Rahman, M. F. Ahmed, B. Biswas, and N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach, J. Alloys Compd., 895 (2022) 162694.
DOI: 10.1016/j.jallcom.2021.162694
Google Scholar
[32]
R. S. Shitole et al., Williamson-Hall strain analysis, cation distribution and magnetic interactions in Dy3+ substituted zinc-chromium ferrite, J. Magn. Magn. Mater., 588 (2023) 171468.
DOI: 10.1016/j.jmmm.2023.171468
Google Scholar
[33]
S.N. Rishikeshi, S.S. Joshi, M. K. Temgire, and J. R. Bellare, Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different?, Dalton Trans., 42(15) (2013) 5430.
DOI: 10.1039/c2dt32026f
Google Scholar
[34]
H. Jalili, B. Aslibeiki, A. Ghotbi Varzaneh, and V. A. Chernenko, The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles, Beilstein J. Nanotechnol., 10 (2019) 1348–1359.
DOI: 10.3762/bjnano.10.133
Google Scholar
[35]
R. K. Selvan, C. O. Augustin, L. J. Berchmans, and R. Saraswathi, Combustion synthesis of CuFe2O4, Mater. Res. Bull., 38(1) (2003) 41–54.
DOI: 10.1016/s0025-5408(02)01004-8
Google Scholar
[36]
R. Jain, & S. Gulati, Influence of Fe2+ substitution on FTIR and Raman spectra of Mn ferrite nanoparticles. Vibrational Spectroscopy, 126(103540), (2023). 103540.
DOI: 10.1016/j.vibspec.2023.103540
Google Scholar
[37]
S. M. Ansari, D. Phase, Y. D. Kolekar, & C. V. Ramana, Effect of Manganese-Doping on the chemical and optical properties of cobalt ferrite nanoparticles. Materials Science & Engineering. B, Solid-State Materials for Advanced Technology, 300(117134), (2024). 117134.
DOI: 10.1016/j.mseb.2023.117134
Google Scholar
[38]
A. Ahlawat, V. G. Sathe, V. R. Reddy, and A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method, J. Magn. Magn. Mater., 323(15) (2011) 2049–2054.
DOI: 10.1016/j.jmmm.2011.03.017
Google Scholar
[39]
D.V. Kurmude, C.M. Kale, P. S. Aghav, D. R. Shengule, and K. M. Jadhav, Superparamagnetic behavior of zinc-substituted nickel ferrite nanoparticles and its effect on mossbauer and magnetic parameters, J. Supercond. Nov. Magn., 27(8) (2014) 1889–1897.
DOI: 10.1007/s10948-014-2535-y
Google Scholar
[40]
Clogston, Jeffrey D., and Anil K. Patri. Zeta Potential Measurement. Methods in Molecular Biology, 63–70. Totowa, NJ: Humana Press, 2011.
Google Scholar
[41]
V. Springer, E. Pecini, and M. Avena, Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions, J. Environ. Chem. Eng., 4(4) (2016) 3882–3890.
DOI: 10.1016/j.jece.2016.08.026
Google Scholar
[42]
Y. Mozhdehbakhsh Mofrad, S. Asiaei, H. Shaygani, & S. S. Salehi, Investigating the effect of magnetic field and nanoparticles characteristics in the treatment of glioblastoma by magnetic hyperthermia method: An in silico study. Results in Engineering, 23(102473), (2024). 102473.
DOI: 10.1016/j.rineng.2024.102473
Google Scholar
[43]
J. Gong, J. Hu, X. Yan, L. Xiang, S. Chen, Y. Lu. Injectable hydrogels including magnetic nanosheets for multidisciplinary treatment of hepatocellular carcinoma via magnetic hyperthermia. Small, 20(3). (2024).
DOI: 10.1002/smll.202300733
Google Scholar
[44]
R. Gupta, A. Chauhan, T. Kaur, B. K. Kuanr, & D. Sharma, Enhancing magnetic hyperthermia efficacy through targeted heat shock protein 90 inhibition: Unveiling immune-mediated therapeutic synergy in glioma treatment. ACS Nano, 18(26), (2024). 17145–17161.
DOI: 10.1021/acsnano.4c03887
Google Scholar
[45]
G. Barrera et al., Specific loss power of co/Li/Zn-mixed ferrite powders for magnetic hyperthermia, Sensors (Basel), 20(7) (2020) 2151.
DOI: 10.3390/s20072151
Google Scholar
[46]
R. M. Patil, N. D. Thorat, P. B. Shete, S. V. Otari, B. M. Tiwale, and S. H. Pawar, In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures, Mater. Sci. Eng. C Mater. Biol. Appl., 59 (2016) 702–709.
DOI: 10.1016/j.msec.2015.10.064
Google Scholar
[47]
S. He et al., Maximizing specific loss power for magnetic hyperthermia by hard–soft mixed ferrites, Small, 14(29) (2018).
DOI: 10.1002/smll.201870133
Google Scholar
[48]
E. Deatsch and B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater., 354 (2014) 163–172.
DOI: 10.1016/j.jmmm.2013.11.006
Google Scholar
[49]
S. Kumari, M. K. Manglam, L. K. Pradhan, L. Kumar, J. P. Borah, and M. Kar, Modification in crystal structure of copper ferrite fiber by annealing and its hyperthermia application, Appl. Phys. A Mater. Sci. Process., 127(4) (2021).
DOI: 10.1007/s00339-021-04429-5
Google Scholar
[50]
S. M. Fotukian, A. Barati, M. Soleymani, and A. M. Alizadeh, Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application, J. Alloys Compd., 816 (2020) 152548.
DOI: 10.1016/j.jallcom.2019.152548
Google Scholar
[51]
M. P. Ghosh, N. J. Mondal, R. Sonkar, B. Boro, J. P. Borah, and D. Chowdhury, Sm doped cu–Ni spinel ferrite nanoparticles for hyperthermia and photocatalytic applications, ACS Appl. Nano Mater., 7(7) (2024) 7028–7042.
DOI: 10.1021/acsanm.3c06144
Google Scholar
[52]
K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, and B. Al-Najar, Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies, J. Phys. Chem. Solids, 115 (2018) 162–171.
DOI: 10.1016/j.jpcs.2017.12.024
Google Scholar
[53]
R. Eivazzadeh-Keihan et al., Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications, Langmuir, 37(29) (2021) 8847–8854.
DOI: 10.1021/acs.langmuir.1c01251
Google Scholar
[54]
C. Papadopoulos, et al. Magnetic Fluid Hyperthermia Simulations in Evaluation of SAR Calculation Methods. Physica Medica: PM: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB) 71 (2020) 39–52.
DOI: 10.1016/j.ejmp.2020.02.011
Google Scholar