Phase-Field Approach to Formation of Aluminum Oxyhydroxide Nanofibrils on a Liquid Aluminum Alloy Surface in Water-Containing Atmospheres

Article Preview

Abstract:

Formation of peculiar nanofibril structures on the surface of liquid aluminum alloys as a result of chemical reaction of aluminum with water vapors was well studied experimentally for various alloy components starting from mercury. However, the mechanism of nanofibril formation remains unclear to date, and the lack of an appropriate theoretical model does not allow evaluation of the structure parameters depending on the process conditions. We assume that the interface layer between the liquid metal phase and the atmosphere, containing the water vapor, develops certain inhomogeneities respect to the content of hydroxyl groups. That provides areas of suppressed and enhanced diffusion of the aluminum from the liquid phase toward the atmosphere contact. Phase-field modeling, taking into account their elastic interaction, demonstrates formation of the array of nano-islands, enriched with hydroxyl groups, which can be precursors for formation and growth of nanofibrils with elements of pre-boehmite structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Wislicenus, Über die faserähnliche gewachsene Tonerde (Fasertonerde) und ihre Oberflächenwirkungen (Adsorption), Zeitschrift für Chemie und Industrie der Kolloide 2 (1908) 11-20.

DOI: 10.1007/bf01526935

Google Scholar

[2] Information on https://youtu.be/IrdYueB9pY4 .

Google Scholar

[3] A. Khodan, A. Kanaev, M. Esaulkov, M. Kiselev, V. Nadtochenko, Effects of Surface Chemical Modification by Ethoxysilanes on the Evolution of 3D Structure and Composition of Porous Monoliths Consisting of Alumina Hydroxide Nanofibrils in the Temperature Range 25–1700 °C, Nanomaterials 12 (2022) 3591.

DOI: 10.3390/nano12203591

Google Scholar

[4] A. Khodan, T.H.N. Nguyen, M. Esaulkov, M.R. Kiselev, M. Amamra, J.-L. Vignes, A. Kanaev, Porous monoliths consisting of aluminum oxyhydroxide nanofibrils: 3D structure, chemical composition, and phase transformations in the temperature range 25 – 1700 °C, J Nanopart Res 20 (2018) 194-204.

DOI: 10.1007/s11051-018-4285-4

Google Scholar

[5] S. Xu, X. Zhao, J. Liu, Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature, Renewable and Sustainable Energy Reviews 92 (2018) 17-37.

DOI: 10.1016/j.rser.2018.04.052

Google Scholar

[6] A.S. Lozhkomoev, E.A. Glazkova, N.V. Svarovskaya, O.V. Bakina, S.O. Kazantsev, M.I. Lerner, Specific features of aluminum nanoparticle water and wet air oxidation, AIP Conference Proceedings 1683 (2015) 020128.

DOI: 10.1063/1.4932818

Google Scholar

[7] B.C. Bunker, G.C. Nelson, K.R. Zavadil, J.C. Barbour, F.D. Wall, J.P. Sullivan, C.F. Windisch Jr., M.H. Engelhardt, D.R. Baer, Hydration of Passive Oxide Films on Aluminum, J. Phys. Chem. B 106 (2002) 4705-4713.

DOI: 10.1021/jp013246e

Google Scholar

[8] M.V. Sorokin, I. Ahmad, A.N. Khodan, S.O. Aisida, Pulsed laser deposition of epitaxial films: phase-field description. 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2022, 10-13.

DOI: 10.1109/IBCAST54850.2022.9990074

Google Scholar

[9] L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32 (2002) 113-140.

Google Scholar

[10] A.G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley & Sons, New York, 1983.

Google Scholar

[11] V.V. Slezov, Kinetics of First Order Phase Transitions, Wiley-VCH, Weinheim, 2009.

Google Scholar

[12] A. Onuki, H. Nishimori, Anomalously slow domain growth due to a modulus inhomogeneity in phase-separating alloys, Phys. Rev. B 43 (1991) 13649-13652.

DOI: 10.1103/physrevb.43.13649

Google Scholar