Synthesis, Dynamic Mechanical Properties of Poly(Styrene-co-Acrylonitrile) Grafting Silica Nanocomposites

Article Preview

Abstract:

A series of styrene–acrylonitrile (SAN) copolymer nanoparticles were prepared by grafting styrene–acrylonitrile from both aggregated silica and colloidally dispersed silica nanoparticles using atom-transfer radical polymerisation (ATRP). Cross-linking and macroscopic gelation were minimised by using a miniemulsion system. The thermal and mechanical behavior of composites were made from PSAN aggregated silica nanoparticles or colloidally dispersed silica has been examined by Differential scanning calorimetry (DSC) and Dynamic mechanical thermal analysis (DMTA). The filler particles increased the rubbery modulus above the Tg of PSAN considerably and led to a temperature-independent plateau of the modulus between 130 and 240 °C similar to that normally observed for crosslinked amorphous polymers. Covalent attachment of PSAN to the silica nanoparticles, by grafting the polymer from the surface of the silica using atom-transfer radical polymerization (ATRP), gave rise to hybrid materials with a comparable elastic plateau. While neat PSAN started to flow and deform irreversibly above 120 °C, the new silica nanoparticle–polymer hybrid materials proved stable up to 240 °C, which was more than 120 °C above the Tg of the polymer. Aggregated silica nanoparticles displayed more affect compared to colloidally dispersed silica.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-52

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kuan, H.T.N.; Tan, M.Y.; Shen, Y. and Yahya, M.Y. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Composites and Advanced Materials. (2021), 30, p.2634.

DOI: 10.1177/26349833211007502

Google Scholar

[2] Wang, M.J.; Wolff, S. and Tan, E.H. Filler-elastomer interactions. Part VIII. The role of the distance between filler aggregates in the dynamic properties of filled vulcanizates. Rubber chemistry and technology. (1993), 66(2), pp.178-195.

DOI: 10.5254/1.3538305

Google Scholar

[3] Schaefer, D.W. and Justice, R.S. How nano are nanocomposites? Macromolecules, (2007), 40(24), pp.8501-8517.

DOI: 10.1021/ma070356w

Google Scholar

[4] Prucker, O. and Rühe, J. Mechanism of radical chain polymerizations initiated by azo compounds covalently bound to the surface of spherical particles. Macromolecules. (1998), 31(3), pp.602-613.

DOI: 10.1021/ma970661p

Google Scholar

[5] Rühe, J. January. Polymers grafted from solid surfaces. In Macromolecular Symposia. (1998), 126, (1), pp.215-222). Basel: Hüthig & Wepf Verlag.

DOI: 10.1002/masy.19981260117

Google Scholar

[6] Zhang, Z.; Sèbe, G.; Hou, Y.; Wang, J.; Huang, J. and Zhou, G. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization. Journal of Applied Polymer Science. (2021), 138(48), p.51458.

DOI: 10.1002/app.51458

Google Scholar

[7] Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. and Mardani, H. Polymer grafting on graphene layers by controlled radical polymerization. Advances in Colloid and Interface Science. (2019), 273, p.102021.

DOI: 10.1016/j.cis.2019.102021

Google Scholar

[8] Lacerda, P.S.; Gama, N.; Freire, C.S.; Silvestre, A.J. and Barros-Timmons, A. Grafting poly (methyl methacrylate)(PMMA) from cork via atom transfer radical polymerization (ATRP) towards higher quality of three-dimensional (3D) printed PMMA/Cork-g-PMMA materials. Polymers. (2020), 12(9), p.1867.

DOI: 10.3390/polym12091867

Google Scholar

[9] Matyjaszewski, K. Advanced materials by atom transfer radical polymerization. Advanced Materials. (2018), 30(23), p.1706441.

DOI: 10.1002/adma.201706441

Google Scholar

[10] Vivek, A.V. and Dhamodharan, R. Grafting of methacrylates and styrene on to polystyrene backbone via a "grafting from" ATRP process at ambient temperature. Journal of Polymer Science Part A: Polymer Chemistry. (2007), 45(17), pp.3818-3832.

DOI: 10.1002/pola.22131

Google Scholar

[11] Pyun, J.; Jia, S.; Kowalewski, T.; Patterson, G.D. and Matyjaszewski, K. Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules, (2003), 36(14), pp.5094-5104.

DOI: 10.1021/ma034188t

Google Scholar

[12] Liu, C.H. and Pan, C.Y. Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer. (2007),48(13), pp.3679-3685.

DOI: 10.1016/j.polymer.2007.04.055

Google Scholar

[13] Li, S.; Han, G. and Zhang, W. Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer Chemistry. (2020), 11(11), pp.1830-1844.

DOI: 10.1039/d0py00054j

Google Scholar

[14] Moad, G. A critical survey of dithiocarbamate reversible addition‐fragmentation chain transfer (RAFT) agents in radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry.(2019), 57(3), pp.216-227.

DOI: 10.1002/pola.29199

Google Scholar

[15] Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass tranistion behavior of filled polymers . Macromolecules. (1995), 28, 396–398.

DOI: 10.1021/ma00122a011

Google Scholar

[16] Arrighi, V.; McEwen, I. J.; Qian, H.; Serrano Prieto, M. B. The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer (2003), 44, 6259–6266.

DOI: 10.1016/s0032-3861(03)00667-0

Google Scholar

[17] Yeong, Suk Choi, Mingzhe, Xu. Synthesis of exfoliated poly(styrene-co-acrylonitrile) copolymer/silicate nanocomposite by emulsion polymerization; monomer composition effect on morphology. Polymer (2003), 44, 6989–6994.

DOI: 10.1016/j.polymer.2003.08.020

Google Scholar

[18] Ko, M. Effects of acrylonitrile content on the properties of clay-dispersed poly(styrene-co-acrylonitrile) copolymer nanocomposite. Polymer Bulletin. (2000), 45, 183–190.

DOI: 10.1007/pl00006833

Google Scholar

[19] Vivek, G.; Tirtha, C.; Lindsay, B; ombalski, Y.; Krzysztof, M.; Ramanan, K.Viscoelastic properties of silica-grafted poly(styrene–acrylonitrile) nanocomposites. Polym Sci Part B: Polym Phys.(2006),44,2014–2023.

DOI: 10.1002/polb.20827

Google Scholar

[20] Queffelec, J.; Gaynor, S.G.; Matyjaszewski, K. Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a Catalyst. Macromolecules, (2000), 33, 8629.

DOI: 10.1021/ma000871t

Google Scholar

[21] Antoni, P.; Nyström, D.; Malmström, E.; Johansson, M.; Hult, A. Synthesis of polystyrene grafting filler nanoparticles, Polym. Prepr. , (2005), 46(1), 477.

Google Scholar

[22] Victoria A.; Hans W.; Horn, Gavin O.; Jones, E.; Robert, D. Synthesis of diblock copolymers by combination of organocatalyzed ring-opening polymerization and atom transfer radical polymerization using trichloroethanol as a bifunctional initiator. J. Polym. Sci., Part A: Polym. Chem. (2016), 54, 563–569.

DOI: 10.1002/pola.27807

Google Scholar

[23] Khlifa, M.; Youssef, A.; Zaed, F.; Kraft, A.; Arrigh, V. Synthesis of polystyrene grafting filler nanoparticles: effect of grafting on mechanical reinforcement. International Journal of chemical and molecular engineering,(2014),8,12

Google Scholar

[24] Ohno,K.; Morinaga,T.; Koh. K.; Tsujii, Y.; Fukuda,T. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules, (2005), 38, 2137.

DOI: 10.1021/ma048011q

Google Scholar

[25] Li, M.; Min, K.; and Matyjaszewski, K. Simultaneous Reverse & Normal ATRP (SR&NI). Macromolecules. (2004), 37, 2106-2112.

DOI: 10.1021/ma035284x

Google Scholar

[26] Ojha, S.; Hui, C. M.; Matyjaszewski, K.; and Bockstaller, M. R. Grafting PMMA brushes from α-alumina nanoparticles via SI-ATRP. Mater. Interfaces, (2016), 8 (8), 5458–5465.

DOI: 10.1021/acsami.5b12311

Google Scholar

[27] Dong, H.; Tang, W. and Matyjaszewski, K. Kinetics of Atom Transfer radical polymerisation. Macromolecules. (2007), 40, 2974-2977.

Google Scholar

[28] akubowski, W.; and Matyjaszewski, K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerisation. Macromolecules (2015), 38, 4139-4146.

DOI: 10.1021/ma047389l

Google Scholar

[29] Pietrasik, J.; Dong, H.; Matyjaszewski, K. Synthesis of high molecular weight poly(styrene-co-acrylonitrile) copolymers with controlled architecture. Macromolecules, (2006), 39, 6384.

DOI: 10.1021/ma0611927

Google Scholar

[30] Ha, M. L. P.; Grady, B.P.; Lolli, G.; Resasco, D. E.; Ford, W. T. Composites of single‐walled carbon nanotubes and styrene‐isoprene copolymer. Macromol. Chem. Phys. (2007), 208, 446–456.

DOI: 10.1002/macp.200600521

Google Scholar

[31] Sugimoto, H.; Daimatsu, K.; Nakanishi, E.; Ogasawara, Y.; Yasumura, T.; Inomata, K. Preparation and properties of poly(methylmethacrylate)–silica hybrid materials incorporating reactive silica nanoparticles. Polymer (2006), 47, 3754–3759.

DOI: 10.1016/j.polymer.2006.04.002

Google Scholar