An Overview of the Synthesis and Prospects of Grafted Graphene Oxide Nanohybrids

Article Preview

Abstract:

Hybrids of graphene oxide (GO) are emerged as multifunctional nanomaterials since the realization of their technological potential in EMI shielding, water treatment, sensors, catalysis, and more. They can be formed by combining organic species onto a GO substrate. Recently, the graft polymerization method has been used to develop nanohybrids of GO with varieties of monomers such as aniline, acrylonitrile, glycidyl methacrylate, and 4-vinyl pyridine at PIEAS. Graft polymerization can be done by chemical or radiation methods. This process offers quite a good control to tailor the properties of desired product by optimizing the reaction parameters. If possible chemical modifications of nanohybrids will also open new applications in different research areas. An overview of research recent work carried out at PIEAS on the graft polymerization of monomers on a GO substrate is presented. This work describes the published work on the successful synthesis of the grafted nanohybrids and the importance of optimizing the reaction conditions to obtain good yield of desired product. The practical prospects of the grafted GO nanohybrids in selected applications has also been presented. These polymer grafted GO nanohybrids can be seen as a green materials in many potential applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-75

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Ray, Applications of Graphene and Graphene-Oxide based Nanomaterials. 2015.

DOI: 10.1016/C2014-0-02615-9

Google Scholar

[2] M. Shi, T. Lin, Y. Hu, J. Peng, J. Li, and M. Zhai, "Functionalization of graphene oxide by radiation grafting polyhedral oligomeric silsesquioxane with improved thermal stability and hydrophilicity," J. Mater. Sci., vol. 55, no. 4, p.1489–1498, 2020.

DOI: 10.1007/s10853-019-04098-z

Google Scholar

[3] P. Eskandari, Z. Abousalman-Rezvani, H. Roghani-Mamaqani, M. Salami-Kalajahi, and H. Mardani, "Polymer grafting on graphene layers by controlled radical polymerization," Adv. Colloid Interface Sci., vol. 273, p.102021, Nov. 2019.

DOI: 10.1016/J.CIS.2019.102021

Google Scholar

[4] F. Farjadian, S. Abbaspour, M. A. A. Sadatlu, S. Mirkiani, A. Ghasemi, M. Hoseini-Ghahfarokhi, N. Mozaffari, M. Karimi, and M. R. Hamblin "Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review," Chem. Select, vol. 5, no. 33, p.10200–10219, 2020.

DOI: 10.1002/slct.202002501

Google Scholar

[5] P.P. Brisebois and M. Siaj, "Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation," J. Mater. Chem. C, vol. 8, no. 5, p.1517–1547, 2020.

DOI: 10.1039/c9tc03251g

Google Scholar

[6] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society Reviews, vol. 39, no. 1. p.228–240, Jan. 2010.

DOI: 10.1039/b917103g

Google Scholar

[7] A. Bhattacharya and B.N. Misra, "Grafting: A versatile means to modify polymers: Techniques, factors and applications," Prog. Polym. Sci., vol. 29, no. 8., pp.767-814, 2004.

DOI: 10.1016/j.progpolymsci.2004.05.002

Google Scholar

[8] S. Taimur, M. I. Hassan, and T. Yasin, "Removal of copper using novel amidoxime based chelating nanohybrid adsorbent," Eur. Polym. J., vol. 95, p.93–104, Oct. 2017.

DOI: 10.1016/j.eurpolymj.2017.08.004

Google Scholar

[9] D.J. Joshi, J. R. Koduru, N.I. Malek, C.M. Hussain, and S.K. Kailasa, "Surface modifications and analytical applications of graphene oxide: A review," TrAC Trends Anal. Chem., vol. 144, p.116448, Nov. 2021.

DOI: 10.1016/j.trac.2021.116448

Google Scholar

[10] V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, "Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications," Chem. Rev., vol. 116, no. 9, p.5464–5519, 2016.

DOI: 10.1021/acs.chemrev.5b00620

Google Scholar

[11] Y. Yan, S. W. In, C. Hao, L. Shar-Mun, M. Sivakumar, H. Svenja, Z. Haitao, L. Edward, W. Tao, and P. C. Heng, "A recent trend: application of graphene in catalysis," Carbon Lett., vol. 31, no. 2, p.177–199, 2021.

DOI: 10.1007/s42823-020-00200-7

Google Scholar

[12] Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, "Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection," Adv. Mater., vol. 22, no. 19, p.2206–2210, 2010.

DOI: 10.1002/adma.200903783

Google Scholar

[13] K. Toda, R. Furue, and S. Hayami, "Recent progress in applications of graphene oxide for gas sensing: A review," Anal. Chim. Acta, vol. 878, p.43–53, 2015.

DOI: 10.1016/j.aca.2015.02.002

Google Scholar

[14] C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, "Biomedical applications of graphene and graphene oxide," Acc. Chem. Res., vol. 46, no. 10, p.2211–2224, 2013.

DOI: 10.1021/ar300159f

Google Scholar

[15] K.C. Kemp, H. Seema, M. Salah, N.H. Le, K. Mahesh, V. Chandera, K. S. Kim, "Environmental applications using graphene composites: water remediation and gas adsorption," Nanoscale, vol. 5, no. 8, p.3149–3171, Mar. 2013.

DOI: 10.1039/c3nr33708a

Google Scholar

[16] R. Zhang, A. Palumbo, J. C. Kim, J. Ding, and E. H. Yang, "Flexible Graphene-, Graphene-Oxide-, and Carbon-Nanotube-Based Supercapacitors and Batteries," Ann. Phys., vol. 531, no. 10, p.1–18, 2019.

DOI: 10.1002/andp.201800507

Google Scholar

[17] F. Li, X. Jiang, J. Zhao, and S. Zhang, "Graphene oxide: A promising nanomaterial for energy and environmental applications," Nano Energy, vol. 16, pp.488-515, Sep. 2015.

DOI: 10.1016/j.nanoen.2015.07.014

Google Scholar

[18] A.M. Dimiev and S. Eigler, Graphene oxide: fundamentals and applications, John Wiley and Sons, vol. 53, no. 9. 2013.

Google Scholar

[19] D. Sharma, S. Kanchi, M. I. Sabela, and K. Bisetty, "Insight into the biosensing of graphene oxide: Present and future prospects," Arab. J. Chem., vol. 9, no. 2, p.238–261, 2016.

DOI: 10.1016/j.arabjc.2015.07.015

Google Scholar

[20] J. Liu, L. Cui, and D. Losic, "Graphene and graphene oxide as new nanocarriers for drug delivery applications," Acta Biomater., vol. 9, no. 12, p.9243–9257, 2013.

DOI: 10.1016/j.actbio.2013.08.016

Google Scholar

[21] S. Velusamy, A. Roy, S. Sundaram, and T. Kumar Mallick, "A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment," Chem. Rec., vol. 21, no. 7, p.1570–1610, 2021.

DOI: 10.1002/tcr.202000153

Google Scholar

[22] K. Thakur and B. Kandasubramanian, "Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants : A Review," 2019.

DOI: 10.1021/acs.jced.8b01057

Google Scholar

[23] X. M. Huang, L.Z. Liu, S. Zhou, and J.J. Zhao, "Physical properties and device applications of graphene oxide," Front. Phys., vol. 15, no. 3, 2020.

DOI: 10.1007/s11467-019-0937-9

Google Scholar

[24] M. Nurunnabi, K. Parvez, M. Nafiujjaman, V. Revuri, X. Feng, Y.-K. Lee, "Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges," RSC Adv., vol. 5, no. 52, p.42141–42161, 2015.

DOI: 10.1039/c5ra04756k

Google Scholar

[25] M. Omichi, Y. Ueki, N. Seko, and Y. Maekawa, "Development of a simplified radiation-induced emulsion graft polymerization method and its application to the fabrication of a heavy metal adsorbent," Polymers (Basel)., vol. 11, no. 8, 2019.

DOI: 10.3390/polym11081373

Google Scholar

[26] J.F. Dai, G.J. Wang, L. Ma, and C.K. Wu, "Surface properties of graphene: Relationship to graphene-polymer composites," Rev. Adv. Mater. Sci., vol. 40, no. 1, p.60–71, 2015.

Google Scholar

[27] A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, and B. Ahmad, "Synthesis and study of polyaniline grafted graphene oxide nanohybrids," Mater. Res. Bull., vol. 157, p.112006, Jan. 2023.

DOI: 10.1016/j.materresbull.2022.112006

Google Scholar

[28] W. Yu, L. Sisi, Y. Haiyan, and L. Jie, "Progress in the functional modification of graphene/graphene oxide: A review," RSC Advances, vol. 10, no. 26. Royal Society of Chemistry, p.15328–15345, Apr. 17, 2020.

DOI: 10.1039/d0ra01068e

Google Scholar

[29] Y. Uyama, K. Kato, and Y. Ikada, "Surface Modification of Polymers by Grafting," Adv. Polym. Sci., vol. 137, 1998.

DOI: 10.1007/3-540-69685-7_1

Google Scholar

[30] A. Nasir, A. Raza, M. Tahir, and T. Yasin, "Free-radical graft polymerization of acrylonitrile on gamma irradiated graphene oxide: Synthesis and characterization," Mater. Chem. Phys., vol. 246, p.122807, May 2020.

DOI: 10.1016/j.matchemphys.2020.122807

Google Scholar

[31] S.S. Abbas, G.J. Rees, N. L. Kelly, C. E. J. Dancer, J. V. Hanna, and T. McNally, "Facile silane functionalization of graphene oxide," Nanoscale, vol. 10, no. 34, p.16231–16242, Aug. 2018.

DOI: 10.1039/c8nr04781b

Google Scholar

[32] A. Nasir, M. Inaam-ul-Hassan, A. Raza, M. Tahir, and T. Yasin, "Removal of copper using chitosan beads embedded with amidoxime grafted graphene oxide nanohybids," Int. J. Biol. Macromol., Sep. 2022.

DOI: 10.1016/j.ijbiomac.2022.09.188

Google Scholar

[33] V.I. Eliseeva, S.S. Ivanchev, S.I. Kuchanov, and A. V. Lebedev, Emulsion Polymerization and Its Applications in Industry,  Springer Sci. Bus. Media, 1981.

DOI: 10.1007/978-1-4684-1641-1

Google Scholar

[34] M. Tahir, A. Raza, A. Nasir, and T. Yasin, "Radiation induced graft polymerization of glycidyl methacrylate onto sepiolite," Radiat. Phys. Chem., vol. 179, p.109259, Feb. 2021.

DOI: 10.1016/j.radphyschem.2020.109259

Google Scholar

[35] A.S. Abo Dena, A.M. Ali, and I.M. El-Sherbiny, "Surface-Imprinted Polymers (SIPs): Advanced Materials for Bio-Recognition," J. Nanotechnol. Adv. Mater., vol. 8, no. 1, p.1–19, 2020.

Google Scholar

[36] M. Teodorescu, P. O. Stanescu, H. Iovu, and C. Draghici, "Free radical polymerization of vinyl acetate in the presence of liquid polysulfides," React. Funct. Polym., vol. 70, no. 7, p.419–425, Jul. 2010.

DOI: 10.1016/j.reactfunctpolym.2010.04.001

Google Scholar

[37] A. Raza, A. Nasir, M. Tahir, S. Taimur, T. Yasin, and M. Nadeem, "Synthesis and EMI shielding studies of polyaniline grafted conducting nanohybrid," J. Appl. Polym. Sci., vol. 138, no. 2, Jan. 2021.

DOI: 10.1002/app.49680

Google Scholar

[38] A. Raza, M. Tahir, A. Nasir, T. Yasin, and M. Nadeem, "Sepiolite grafted polypyrrole: Influence of degree of grafting on structural, thermal, and impedance properties of nanohybrid," J. Appl. Polym. Sci., vol. 137, no. 37, p.49085, Oct. 2020.

DOI: 10.1002/app.49085

Google Scholar

[39] A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, and B. Ahmad, "Synthesis and Study of Polyaniline grafted Graphene Oxide Nanohybrids," Mater. Res. Bull., p.112006, Aug. 2022.

DOI: 10.1016/j.materresbull.2022.112006

Google Scholar

[40] S. Taimur and T. Yasin, "Influence of the synthesis parameters on the properties of amidoxime grafted sepiolite nanocomposites," Appl. Surf. Sci., vol. 422, p.239–246, Nov. 2017.

DOI: 10.1016/j.apsusc.2017.05.263

Google Scholar

[41] A. Khan and I. Hussain, "Fabrication and Characterization of Amidoxime-Grafted Silica Composite Particles via Emulsion Graft Polymerization," J. Chem. Chem. Eng. Res. Artic., vol. 39, no. 5, 2020

Google Scholar

[42] I.A. Khan, H. Hussain, T. Yasin, and M. Inaam-ul-Hassan, "Surface modification of mesoporous silica by radiation induced graft polymerization of styrene and subsequent sulfonation for ion-exchange applications," J. Appl. Polym. Sci., vol. 137, no. 26, p.48835, Jul. 2020.

DOI: 10.1002/app.48835

Google Scholar

[43] G. Chen, Y. Wang, H. Weng, Z. Wu, K. He, P. Zhang, Z. Guo, and M. Lin, "Selective Separation of Pd(II) on Pyridine-Functionalized Graphene Oxide Prepared by Radiation-Induced Simultaneous Grafting Polymerization and Reduction," ACS Appl. Mater. Interfaces, vol. 11, no. 27, p.24560–24570, Jul. 2019.

DOI: 10.1021/acsami.9b06162

Google Scholar

[44] H. L. Ma, Y. Zhang, L. Zhang, L. Wang, C. Sun, P. Liu, L. He, X. Zeng, and M. Zhai, "Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal," Radiat. Phys. Chem., vol. 124, p.159–163, Jul. 2016, doi: 10.1016/j.radphyschem. 2015.11.002.

DOI: 10.1016/j.radphyschem.2015.11.002

Google Scholar

[45] M. I. ul Hassan, S. Taimur, and T. Yasin, "Upcycling of polypropylene waste by surface modification using radiation-induced grafting," Appl. Surf. Sci., vol. 422, p.720–730, Nov. 2017.

DOI: 10.1016/j.apsusc.2017.06.086

Google Scholar

[46] T. Kavitha, I. K. Kang, and S. Y. Park, "Poly(4-vinyl pyridine)-grafted graphene oxide for drug delivery and antimicrobial applications," Polym. Int., vol. 64, no. 11, p.1660–1666, Nov. 2015.

DOI: 10.1002/pi.4968

Google Scholar

[47] E. A. Boucher, E. Khosravi-Babadi, and C. C. Mollett, "Quaternization of poly(4-vinyl pyridine). Kinetic and viscometric measurements," J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 75, no. 0, p.1728–1735, Jan. 1979.

DOI: 10.1039/f19797501728

Google Scholar

[48] M. U. Khan, B. A. Al-Asbahi, S. Bibi, S. Taimur, M. Nawaz, T. Yasin, W.A. Farooq, Z. Ali, I. Bibi, S. Begum, A. Bahader, Zia ur Rehman, N. Yaqub, and A. A. A. Ahmed, "Investigations on amidoxime grafted sepiolite based chitosan organic–inorganic nanohybrid composite beads towards wastewater detoxification," J. King Saud Univ. - Sci., vol. 34, no. 1, p.101689, Jan. 2022.

DOI: 10.1016/J.JKSUS.2021.101689

Google Scholar