[1]
S.C. Ray, Applications of Graphene and Graphene-Oxide based Nanomaterials. 2015.
DOI: 10.1016/C2014-0-02615-9
Google Scholar
[2]
M. Shi, T. Lin, Y. Hu, J. Peng, J. Li, and M. Zhai, "Functionalization of graphene oxide by radiation grafting polyhedral oligomeric silsesquioxane with improved thermal stability and hydrophilicity," J. Mater. Sci., vol. 55, no. 4, p.1489–1498, 2020.
DOI: 10.1007/s10853-019-04098-z
Google Scholar
[3]
P. Eskandari, Z. Abousalman-Rezvani, H. Roghani-Mamaqani, M. Salami-Kalajahi, and H. Mardani, "Polymer grafting on graphene layers by controlled radical polymerization," Adv. Colloid Interface Sci., vol. 273, p.102021, Nov. 2019.
DOI: 10.1016/J.CIS.2019.102021
Google Scholar
[4]
F. Farjadian, S. Abbaspour, M. A. A. Sadatlu, S. Mirkiani, A. Ghasemi, M. Hoseini-Ghahfarokhi, N. Mozaffari, M. Karimi, and M. R. Hamblin "Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review," Chem. Select, vol. 5, no. 33, p.10200–10219, 2020.
DOI: 10.1002/slct.202002501
Google Scholar
[5]
P.P. Brisebois and M. Siaj, "Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation," J. Mater. Chem. C, vol. 8, no. 5, p.1517–1547, 2020.
DOI: 10.1039/c9tc03251g
Google Scholar
[6]
D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society Reviews, vol. 39, no. 1. p.228–240, Jan. 2010.
DOI: 10.1039/b917103g
Google Scholar
[7]
A. Bhattacharya and B.N. Misra, "Grafting: A versatile means to modify polymers: Techniques, factors and applications," Prog. Polym. Sci., vol. 29, no. 8., pp.767-814, 2004.
DOI: 10.1016/j.progpolymsci.2004.05.002
Google Scholar
[8]
S. Taimur, M. I. Hassan, and T. Yasin, "Removal of copper using novel amidoxime based chelating nanohybrid adsorbent," Eur. Polym. J., vol. 95, p.93–104, Oct. 2017.
DOI: 10.1016/j.eurpolymj.2017.08.004
Google Scholar
[9]
D.J. Joshi, J. R. Koduru, N.I. Malek, C.M. Hussain, and S.K. Kailasa, "Surface modifications and analytical applications of graphene oxide: A review," TrAC Trends Anal. Chem., vol. 144, p.116448, Nov. 2021.
DOI: 10.1016/j.trac.2021.116448
Google Scholar
[10]
V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, "Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications," Chem. Rev., vol. 116, no. 9, p.5464–5519, 2016.
DOI: 10.1021/acs.chemrev.5b00620
Google Scholar
[11]
Y. Yan, S. W. In, C. Hao, L. Shar-Mun, M. Sivakumar, H. Svenja, Z. Haitao, L. Edward, W. Tao, and P. C. Heng, "A recent trend: application of graphene in catalysis," Carbon Lett., vol. 31, no. 2, p.177–199, 2021.
DOI: 10.1007/s42823-020-00200-7
Google Scholar
[12]
Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, "Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection," Adv. Mater., vol. 22, no. 19, p.2206–2210, 2010.
DOI: 10.1002/adma.200903783
Google Scholar
[13]
K. Toda, R. Furue, and S. Hayami, "Recent progress in applications of graphene oxide for gas sensing: A review," Anal. Chim. Acta, vol. 878, p.43–53, 2015.
DOI: 10.1016/j.aca.2015.02.002
Google Scholar
[14]
C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, "Biomedical applications of graphene and graphene oxide," Acc. Chem. Res., vol. 46, no. 10, p.2211–2224, 2013.
DOI: 10.1021/ar300159f
Google Scholar
[15]
K.C. Kemp, H. Seema, M. Salah, N.H. Le, K. Mahesh, V. Chandera, K. S. Kim, "Environmental applications using graphene composites: water remediation and gas adsorption," Nanoscale, vol. 5, no. 8, p.3149–3171, Mar. 2013.
DOI: 10.1039/c3nr33708a
Google Scholar
[16]
R. Zhang, A. Palumbo, J. C. Kim, J. Ding, and E. H. Yang, "Flexible Graphene-, Graphene-Oxide-, and Carbon-Nanotube-Based Supercapacitors and Batteries," Ann. Phys., vol. 531, no. 10, p.1–18, 2019.
DOI: 10.1002/andp.201800507
Google Scholar
[17]
F. Li, X. Jiang, J. Zhao, and S. Zhang, "Graphene oxide: A promising nanomaterial for energy and environmental applications," Nano Energy, vol. 16, pp.488-515, Sep. 2015.
DOI: 10.1016/j.nanoen.2015.07.014
Google Scholar
[18]
A.M. Dimiev and S. Eigler, Graphene oxide: fundamentals and applications, John Wiley and Sons, vol. 53, no. 9. 2013.
Google Scholar
[19]
D. Sharma, S. Kanchi, M. I. Sabela, and K. Bisetty, "Insight into the biosensing of graphene oxide: Present and future prospects," Arab. J. Chem., vol. 9, no. 2, p.238–261, 2016.
DOI: 10.1016/j.arabjc.2015.07.015
Google Scholar
[20]
J. Liu, L. Cui, and D. Losic, "Graphene and graphene oxide as new nanocarriers for drug delivery applications," Acta Biomater., vol. 9, no. 12, p.9243–9257, 2013.
DOI: 10.1016/j.actbio.2013.08.016
Google Scholar
[21]
S. Velusamy, A. Roy, S. Sundaram, and T. Kumar Mallick, "A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment," Chem. Rec., vol. 21, no. 7, p.1570–1610, 2021.
DOI: 10.1002/tcr.202000153
Google Scholar
[22]
K. Thakur and B. Kandasubramanian, "Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants : A Review," 2019.
DOI: 10.1021/acs.jced.8b01057
Google Scholar
[23]
X. M. Huang, L.Z. Liu, S. Zhou, and J.J. Zhao, "Physical properties and device applications of graphene oxide," Front. Phys., vol. 15, no. 3, 2020.
DOI: 10.1007/s11467-019-0937-9
Google Scholar
[24]
M. Nurunnabi, K. Parvez, M. Nafiujjaman, V. Revuri, X. Feng, Y.-K. Lee, "Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges," RSC Adv., vol. 5, no. 52, p.42141–42161, 2015.
DOI: 10.1039/c5ra04756k
Google Scholar
[25]
M. Omichi, Y. Ueki, N. Seko, and Y. Maekawa, "Development of a simplified radiation-induced emulsion graft polymerization method and its application to the fabrication of a heavy metal adsorbent," Polymers (Basel)., vol. 11, no. 8, 2019.
DOI: 10.3390/polym11081373
Google Scholar
[26]
J.F. Dai, G.J. Wang, L. Ma, and C.K. Wu, "Surface properties of graphene: Relationship to graphene-polymer composites," Rev. Adv. Mater. Sci., vol. 40, no. 1, p.60–71, 2015.
Google Scholar
[27]
A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, and B. Ahmad, "Synthesis and study of polyaniline grafted graphene oxide nanohybrids," Mater. Res. Bull., vol. 157, p.112006, Jan. 2023.
DOI: 10.1016/j.materresbull.2022.112006
Google Scholar
[28]
W. Yu, L. Sisi, Y. Haiyan, and L. Jie, "Progress in the functional modification of graphene/graphene oxide: A review," RSC Advances, vol. 10, no. 26. Royal Society of Chemistry, p.15328–15345, Apr. 17, 2020.
DOI: 10.1039/d0ra01068e
Google Scholar
[29]
Y. Uyama, K. Kato, and Y. Ikada, "Surface Modification of Polymers by Grafting," Adv. Polym. Sci., vol. 137, 1998.
DOI: 10.1007/3-540-69685-7_1
Google Scholar
[30]
A. Nasir, A. Raza, M. Tahir, and T. Yasin, "Free-radical graft polymerization of acrylonitrile on gamma irradiated graphene oxide: Synthesis and characterization," Mater. Chem. Phys., vol. 246, p.122807, May 2020.
DOI: 10.1016/j.matchemphys.2020.122807
Google Scholar
[31]
S.S. Abbas, G.J. Rees, N. L. Kelly, C. E. J. Dancer, J. V. Hanna, and T. McNally, "Facile silane functionalization of graphene oxide," Nanoscale, vol. 10, no. 34, p.16231–16242, Aug. 2018.
DOI: 10.1039/c8nr04781b
Google Scholar
[32]
A. Nasir, M. Inaam-ul-Hassan, A. Raza, M. Tahir, and T. Yasin, "Removal of copper using chitosan beads embedded with amidoxime grafted graphene oxide nanohybids," Int. J. Biol. Macromol., Sep. 2022.
DOI: 10.1016/j.ijbiomac.2022.09.188
Google Scholar
[33]
V.I. Eliseeva, S.S. Ivanchev, S.I. Kuchanov, and A. V. Lebedev, Emulsion Polymerization and Its Applications in Industry, Springer Sci. Bus. Media, 1981.
DOI: 10.1007/978-1-4684-1641-1
Google Scholar
[34]
M. Tahir, A. Raza, A. Nasir, and T. Yasin, "Radiation induced graft polymerization of glycidyl methacrylate onto sepiolite," Radiat. Phys. Chem., vol. 179, p.109259, Feb. 2021.
DOI: 10.1016/j.radphyschem.2020.109259
Google Scholar
[35]
A.S. Abo Dena, A.M. Ali, and I.M. El-Sherbiny, "Surface-Imprinted Polymers (SIPs): Advanced Materials for Bio-Recognition," J. Nanotechnol. Adv. Mater., vol. 8, no. 1, p.1–19, 2020.
Google Scholar
[36]
M. Teodorescu, P. O. Stanescu, H. Iovu, and C. Draghici, "Free radical polymerization of vinyl acetate in the presence of liquid polysulfides," React. Funct. Polym., vol. 70, no. 7, p.419–425, Jul. 2010.
DOI: 10.1016/j.reactfunctpolym.2010.04.001
Google Scholar
[37]
A. Raza, A. Nasir, M. Tahir, S. Taimur, T. Yasin, and M. Nadeem, "Synthesis and EMI shielding studies of polyaniline grafted conducting nanohybrid," J. Appl. Polym. Sci., vol. 138, no. 2, Jan. 2021.
DOI: 10.1002/app.49680
Google Scholar
[38]
A. Raza, M. Tahir, A. Nasir, T. Yasin, and M. Nadeem, "Sepiolite grafted polypyrrole: Influence of degree of grafting on structural, thermal, and impedance properties of nanohybrid," J. Appl. Polym. Sci., vol. 137, no. 37, p.49085, Oct. 2020.
DOI: 10.1002/app.49085
Google Scholar
[39]
A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, and B. Ahmad, "Synthesis and Study of Polyaniline grafted Graphene Oxide Nanohybrids," Mater. Res. Bull., p.112006, Aug. 2022.
DOI: 10.1016/j.materresbull.2022.112006
Google Scholar
[40]
S. Taimur and T. Yasin, "Influence of the synthesis parameters on the properties of amidoxime grafted sepiolite nanocomposites," Appl. Surf. Sci., vol. 422, p.239–246, Nov. 2017.
DOI: 10.1016/j.apsusc.2017.05.263
Google Scholar
[41]
A. Khan and I. Hussain, "Fabrication and Characterization of Amidoxime-Grafted Silica Composite Particles via Emulsion Graft Polymerization," J. Chem. Chem. Eng. Res. Artic., vol. 39, no. 5, 2020
Google Scholar
[42]
I.A. Khan, H. Hussain, T. Yasin, and M. Inaam-ul-Hassan, "Surface modification of mesoporous silica by radiation induced graft polymerization of styrene and subsequent sulfonation for ion-exchange applications," J. Appl. Polym. Sci., vol. 137, no. 26, p.48835, Jul. 2020.
DOI: 10.1002/app.48835
Google Scholar
[43]
G. Chen, Y. Wang, H. Weng, Z. Wu, K. He, P. Zhang, Z. Guo, and M. Lin, "Selective Separation of Pd(II) on Pyridine-Functionalized Graphene Oxide Prepared by Radiation-Induced Simultaneous Grafting Polymerization and Reduction," ACS Appl. Mater. Interfaces, vol. 11, no. 27, p.24560–24570, Jul. 2019.
DOI: 10.1021/acsami.9b06162
Google Scholar
[44]
H. L. Ma, Y. Zhang, L. Zhang, L. Wang, C. Sun, P. Liu, L. He, X. Zeng, and M. Zhai, "Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal," Radiat. Phys. Chem., vol. 124, p.159–163, Jul. 2016, doi: 10.1016/j.radphyschem. 2015.11.002.
DOI: 10.1016/j.radphyschem.2015.11.002
Google Scholar
[45]
M. I. ul Hassan, S. Taimur, and T. Yasin, "Upcycling of polypropylene waste by surface modification using radiation-induced grafting," Appl. Surf. Sci., vol. 422, p.720–730, Nov. 2017.
DOI: 10.1016/j.apsusc.2017.06.086
Google Scholar
[46]
T. Kavitha, I. K. Kang, and S. Y. Park, "Poly(4-vinyl pyridine)-grafted graphene oxide for drug delivery and antimicrobial applications," Polym. Int., vol. 64, no. 11, p.1660–1666, Nov. 2015.
DOI: 10.1002/pi.4968
Google Scholar
[47]
E. A. Boucher, E. Khosravi-Babadi, and C. C. Mollett, "Quaternization of poly(4-vinyl pyridine). Kinetic and viscometric measurements," J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 75, no. 0, p.1728–1735, Jan. 1979.
DOI: 10.1039/f19797501728
Google Scholar
[48]
M. U. Khan, B. A. Al-Asbahi, S. Bibi, S. Taimur, M. Nawaz, T. Yasin, W.A. Farooq, Z. Ali, I. Bibi, S. Begum, A. Bahader, Zia ur Rehman, N. Yaqub, and A. A. A. Ahmed, "Investigations on amidoxime grafted sepiolite based chitosan organic–inorganic nanohybrid composite beads towards wastewater detoxification," J. King Saud Univ. - Sci., vol. 34, no. 1, p.101689, Jan. 2022.
DOI: 10.1016/J.JKSUS.2021.101689
Google Scholar