[1]
K. C. Anil, J. Kumaraswamy, M. Reddy, B. Prakash, Mechanical behaviour and fractured surface analysis of bauxite residue and graphite reinforced aluminium hybrid composites. Frat. Integria Strut. 16 (2022) 168-179.
DOI: 10.3221/igf-esis.62.12
Google Scholar
[2]
R. Soenoko, W. Suprapto, Y.S. Irawan, Characterization of aluminium matrix composite of Al-ZnSiFeCuMg alloy reinforced with silica sand tailings particles, J. Mech. Eng. Sci. 14 (2020) 7094-7108.
DOI: 10.15282/jmes.14.3.2020.11.0556
Google Scholar
[3]
V.E. Ogbonna, P.S. Olayiwola, H.E. Mgbemere, Effect of varying silicon carbide particulate on the mechanical properties of aluminium based alloy automobile brake disc component, Int. J. Automot. Eng. 9 (2019) 2934-2941.
Google Scholar
[4]
V.S. Aigbodion, Bean pod ash nanoparticles a promising reinforcement for aluminium matrix biocomposites, J. Mater. Res. Technol. 8 (2019) 6011–6020.
DOI: 10.1016/j.jmrt.2019.09.075
Google Scholar
[5]
M. Sambathkumar, R. Gukendran, T. Mohanraj, D. K. Karupannasamy, N. Natarajan, D. S. Christopher, A systematic review on the mechanical, tribological, and corrosion properties of Al 7075 metal matrix composites fabricated through stir casting process, Adv. Mater. Sci. Eng. 2023 (2023) 5442809.
DOI: 10.1155/2023/5442809
Google Scholar
[6]
P. Garg, A. Jamwal, D. Kumar, Advance research progresses in aluminium matrixcomposites: Manufacturing & applications, J. Mater. Res. Technol. 8 (2019) 4924–4939.
Google Scholar
[7]
A. Abebe Emiru, D. K. Sinha, A. Kumar, A. Yadav, Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B4C and MoS2 via stir casting. Int. J. Metalcast. 17 (2023) 801-812.
DOI: 10.1007/s40962-022-00800-1
Google Scholar
[8]
V. Mohanavel, M. Ravichandran, Experimental investigation on mechanical properties of AA7075-AlN composites, Mater. Test. 61 (2019) 554-558.
DOI: 10.3139/120.111354
Google Scholar
[9]
A. S. Lemine, O. Fayyaz, M. Yusuf, R. A. Shakoor, Z. Ahmad, J. Bhadra, N. J. Al-Thani, Microstructure and mechanical properties of aluminum matrix composites with bimodal-sized hybrid NbC-B4C reinforcements, Mater. Today Commun. 33 (2022) 104512.
DOI: 10.1016/j.mtcomm.2022.104512
Google Scholar
[10]
B.A. Kumar, I. Dinaharan, N. Murugan, Microstructural, mechanical and wear properties of friction stir welded AA6061/AlNp composite joints. J. Mater. Eng. Perform, 31 (2022) 651-666.
DOI: 10.1007/s11665-021-06181-6
Google Scholar
[11]
J.J. Moses, I. Dinaharan, S.J. Sekhar, Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting. Trans. Nonferrous Met. Soc. China 26 (2016) 1498-1511.
DOI: 10.1016/s1003-6326(16)64256-5
Google Scholar
[12]
S. Soltani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, Stir casting process for manufacture of Al–SiC composites, Rare Met. 36 (2017) 581-590.
DOI: 10.1007/s12598-015-0565-7
Google Scholar
[13]
R.K. Arya, A. Telang, Silicon nitride as a reinforcement for aluminium metal matrix composites to enhance microstructural, mechanical and tribological behavior, Int. J. Eng. Adv. Technol. 9 (2020) 3366-3374.
DOI: 10.35940/ijeat.c6032.029320
Google Scholar
[14]
J. Fayomi, A.P.I. Popoola, O.M. Popoola, Understanding the microstructural evolution, mechanical properties, and tribological behavior of AA8011-reinforced nano-Si3N4 for automobile application, Int. J. Adv. Manuf. Technol. 111 (2020) 53–62.
DOI: 10.1007/s00170-020-06054-7
Google Scholar
[15]
B. Ashok Kumar, M. Muthu Krishnan, A. Felix Sahayaraj, Characterization of the aluminium matrix composite reinforced with silicon nitride (AA6061/Si3N4) synthesized by the stir casting route, Adv. Mater. Sci. Eng. 2022 (2022) 1 – 8.
DOI: 10.1155/2022/8761865
Google Scholar
[16]
V. Bharath, M. Nagaral, V. Auradi, Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties, Proc. Mater. Sci. 6 (2014) 1658-1667.
DOI: 10.1016/j.mspro.2014.07.151
Google Scholar
[17]
V.K. Sharma, V. Kumar, R.S. Joshi, Manufacturing of stable hydrophobic surface on rare-earth oxides aluminium hybrid composite, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235 (2021) 899-912.
DOI: 10.1177/0954408920979105
Google Scholar
[18]
D.R. Eddy, F.N. Puri, A.R. Noviyanti, Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst, Proc. Chem. 17 (2015) 55-58.
DOI: 10.1016/j.proche.2015.12.132
Google Scholar
[19]
M. J. Rampe, J. Z. Lombok, V. A. Tiwow, S. M. T. Tengker, J. Bua, Characterization of silica (SiO2) based on beach sand from Sulawesi and Sumatra as silicon carbide (SiC) base material, J. Chem. Technol. Metall. 58 (2023) 467-476.
DOI: 10.59957/jctm.v58i3.75
Google Scholar
[20]
M.J. Rampe, J.Z. Lombok, V.A. Tiwow, Characterization of silica (SiO2) based on beach sand from sulawesi and sumatra as silicon carbide (SiC) base material, J. Chem. Technol. Metall. 58 (2023).
DOI: 10.59957/jctm.v58i3.75
Google Scholar
[21]
D.F. Adams, L.A. Carlsson, R.B. Pipes, Experimental characterization of advanced composite materials (3rd ed.). Florida, USA: CRC Press LLC, 2003.
Google Scholar
[22]
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[23]
H. Nili, S. Walia, M. Bhaskaran, Nanoscale electro-mechanical dynamics of nano-crystalline platinum thin films: An in situ electrical nanoindentation study, J. Appl. Phys. 116 (2014).
DOI: 10.1063/1.4899194
Google Scholar
[24]
N. Savvides T.J. Bell, Microhardness and Young's modulus of diamond and diamondlike carbon films, J. Appl. Phys. 72 (1992) 2791-2796.
DOI: 10.1063/1.351530
Google Scholar
[25]
M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res. 1 (1986) 601-609.
DOI: 10.1557/jmr.1986.0601
Google Scholar
[26]
U.O. Uyor, A.P.I. Popoola, O.M. Popoola, Tribological and nanomechanical responses of 3D microstructured polypropylene matrix using interpenetrated graphene-carbon nanotubes, J. Thermoplast. Compos. Mater. 36 (2023) 673-690.
DOI: 10.1177/08927057211028639
Google Scholar
[27]
A.M.S. Hamouda, S. Sulaiman, T.R. Vijayaram, Processing and characterisation of particulate reinforced aluminium silicon matrix composite, J. Achiev. Mater. Manuf. Eng. 25 (2007) 11-16.
Google Scholar
[28]
J. Fayomi, A.P.I. Popoola, O.P. Oladijo, Experimental study of ZrB2-Si3N4 on the microstructure, mechanical and electrical properties of high grade AA8011 metal matrix composites, J. Alloys Compd. 790 (2019) 610-615.
DOI: 10.1016/j.jallcom.2019.03.112
Google Scholar
[29]
K.K. Singh, S. Singh, A.K. Shrivastava, Study of tribological behavior of silicon carbide based aluminum metal matrix composites under dry and lubricated environment. Adv Mater Sci Eng 2016; 2016.
DOI: 10.1155/2016/3813412
Google Scholar
[30]
G. Nageswaran, S. Natarajan, K.R. Ramkumar, Synthesis, structural characterization, mechanical and wear behaviour of Cu-TiO2-Gr hybrid composite through stir casting technique, J. Alloys Compd. 768 (2018) 733-741.
DOI: 10.1016/j.jallcom.2018.07.288
Google Scholar
[31]
C. García-Cordovilla, E. Louis, Thermal analysis of aluminum alloys. In Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print), (2018), (pp.2649-2679). CRC Press.
DOI: 10.1201/9781351045636-140000445
Google Scholar
[32]
V. Bharath, M. Nagaral, V. Auradi, S.A. Kori, Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties, Proc. Mater. Sci. 6 (2014) 1658-1667.
DOI: 10.1016/j.mspro.2014.07.151
Google Scholar
[33]
A. Urena, J. Rams, M.D. Escalera, Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique. Compos. Sci. Technol. 65 (2005) 2025-2038.
DOI: 10.1016/j.compscitech.2005.04.013
Google Scholar
[34]
S.Y. Fu, C.Y. Yue, X. Hu, On the elastic stress transfer and longitudinal modulus of unidirectional multi-short-fiber composites, Compos. Sci. Technol. 60 (2000) 3001-3012.
DOI: 10.1016/s0266-3538(00)00173-1
Google Scholar
[35]
A. M. Sankhla, K. M. Patel, M. A. Makhesana, K. Giasin, D. Y. Pimenov, S. Wojciechowski, N. Khanna, Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route. J. Mater. Res. Technol. 18 (2022) 282-292.
DOI: 10.1016/j.jmrt.2022.02.094
Google Scholar
[36]
A. Mussatto, I.U. Ahad, R.T. Mousavian, Advanced production routes for metal matrix composites, Eng. Reports 3 (2021) e12330.
DOI: 10.1002/eng2.12330
Google Scholar
[37]
M. Azadi, M. Zolfaghari, S. Rezanezhad, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl. Phys. A, 124 (2018) 1-13.
DOI: 10.1007/s00339-018-1797-9
Google Scholar
[38]
K.L. Zheng, P.F. Yan, X.S. Wei, Study of the nano-network structure in the friction transfer film of the hybrid reinforced aluminum-based composite. Wear 494 (2022) 204268.
DOI: 10.1016/j.wear.2022.204268
Google Scholar
[39]
A.C. Dixit, B. Harshavardhan, R. Shivashankar, Effect of dry sliding wear parameters on the tribological behavior of aluminum hybrid metal matrix composites, Mater. Today Proc. 43 (2021) 2194-2197.
DOI: 10.1016/j.matpr.2020.12.113
Google Scholar
[40]
D.X. Peng, Y. Kang, R.M. Hwang, S. S. Shyr, Y. P. Chang, Tribological properties of diamond and SiO2 nanoparticles added in paraffin, Tribol. Int. 42 (2009) 911-917.
DOI: 10.1016/j.triboint.2008.12.015
Google Scholar
[41]
Y.Y. Bao, J.L. Sun, L.H. Kong, Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. In IOP Conference Series: Mater. Sci. Eng. 182 (2017) 012025, IOP Publishing.
DOI: 10.1088/1757-899x/182/1/012025
Google Scholar
[42]
N. Valizade, Z. Farhat, A review on abrasive wear of aluminum composites: Mechanisms and influencing factors, J. Compos. Sci. 8 (2024) 149.
DOI: 10.3390/jcs8040149
Google Scholar
[43]
N. Fuyama, K. Okada, T. Nagaoka, A. Nishimoto, Improvement of surface properties of aluminum alloy-based composites by multi-layer DLC coating, Mater. Trans. 63 (2022) 1462-1468.
DOI: 10.2320/matertrans.mt-l2022011
Google Scholar
[44]
D.A. Ashebir, G.A. Mengesha, D.K. Sinha, Y. B. Bereda, Tribological and corrosion characteristics of tetra hybrid particulate-reinforced aluminum composites for aerospace and automotive applications, J. Compos. Mater. 57 (2023) 4439-4461.
DOI: 10.1177/00219983231210354
Google Scholar
[45]
V.K. Sharma, V. Kumar, R.S. Joshi Effect of RE addition on wear behavior of an Al-6061 based hybrid composite, Wear, 426 (2019) 961-974.
DOI: 10.1016/j.wear.2019.01.044
Google Scholar
[46]
M. Imran, A.A. Khan, S. Megeri, S. Sadik, Study of hardness and tensile strength of Aluminium-7075 percentage varying reinforced with graphite and bagasse-ash composites, Resource-Efficient Technol 2 (2016) 81-88.
DOI: 10.1016/j.reffit.2016.06.007
Google Scholar
[47]
F. Khodabakhshi, A. Simchi, The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater. Des. 130 (2017) 26-36.
DOI: 10.1016/j.matdes.2017.05.047
Google Scholar
[48]
A. Nieto, H. Yang, L. Jiang, J. M. Schoenung, Reinforcement size effects on the abrasive wear of boron carbide reinforced aluminum composites. Wear 390 (2017) 228-235.
DOI: 10.1016/j.wear.2017.08.002
Google Scholar