Evaluation of the Mechanical and Tribological Properties of Aluminium - Based Composites Reinforced Silica Beach Sand Particulates

Article Preview

Abstract:

The use of silica sand tailings without leaching as a reinforcement in the development of composites remains a material class known for outstanding properties. However, owing to the availability, least expensive, and physical properties of silica beach sand, this study investigates the effect of non-leached silica (SiO2) beach sand particulates on the mechanical and tribological characteristics of aluminium (Al) alloy matrix composites. In the study, an AA6061 alloy matrix was reinforced with varying content of SiO2 beach sand (0, 20, 30, and 40 wt%) using the stir casting process. The SEM results revealed uniform dispersion of the beach sand particulates in the resultant composites with minimal agglomerations up to 30 wt% loading. Thus, the hardness and elastic modulus of the SiO2/AA6061 alloy composites were improved by 326.7% and 90.9%, respectively, at 30 wt% SiO2 particle addition. In addition, with the introduction of the SiO2 particles in the alloy matrix, a reduction in the coefficient of friction by 24.5% and wear rate by 40.79% was recorded compared to the pure Al alloy. These findings indicate the substantial potentiality of silica beach sand particulates reinforced Al alloy matrix composite material as a promising candidate for mechanical load bearing, frictional components, and high-performance engineering applications including construction, automotive component, airframe, marine and rail transport.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-14

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. C. Anil, J. Kumaraswamy, M. Reddy, B. Prakash, Mechanical behaviour and fractured surface analysis of bauxite residue and graphite reinforced aluminium hybrid composites. Frat. Integria Strut. 16 (2022) 168-179.

DOI: 10.3221/igf-esis.62.12

Google Scholar

[2] R. Soenoko, W. Suprapto, Y.S. Irawan, Characterization of aluminium matrix composite of Al-ZnSiFeCuMg alloy reinforced with silica sand tailings particles, J. Mech. Eng. Sci.  14 (2020) 7094-7108.

DOI: 10.15282/jmes.14.3.2020.11.0556

Google Scholar

[3] V.E. Ogbonna, P.S. Olayiwola, H.E. Mgbemere, Effect of varying silicon carbide particulate on the mechanical properties of aluminium based alloy automobile brake disc component, Int. J. Automot. Eng. 9 (2019) 2934-2941.

Google Scholar

[4] V.S. Aigbodion, Bean pod ash nanoparticles a promising reinforcement for aluminium matrix biocomposites, J. Mater. Res. Technol. 8 (2019) 6011–6020.

DOI: 10.1016/j.jmrt.2019.09.075

Google Scholar

[5] M. Sambathkumar, R. Gukendran, T. Mohanraj, D. K. Karupannasamy, N. Natarajan, D. S. Christopher, A systematic review on the mechanical, tribological, and corrosion properties of Al 7075 metal matrix composites fabricated through stir casting process, Adv. Mater. Sci. Eng. 2023 (2023) 5442809.

DOI: 10.1155/2023/5442809

Google Scholar

[6] P. Garg, A. Jamwal, D. Kumar, Advance research progresses in aluminium matrixcomposites: Manufacturing & applications, J. Mater. Res. Technol. 8 (2019) 4924–4939.

Google Scholar

[7] A. Abebe Emiru, D. K. Sinha, A. Kumar, A. Yadav, Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B4C and MoS2 via stir casting. Int. J. Metalcast. 17 (2023) 801-812.

DOI: 10.1007/s40962-022-00800-1

Google Scholar

[8] V. Mohanavel, M. Ravichandran, Experimental investigation on mechanical properties of AA7075-AlN composites, Mater. Test. 61 (2019) 554-558.

DOI: 10.3139/120.111354

Google Scholar

[9] A. S. Lemine, O. Fayyaz, M. Yusuf, R. A. Shakoor, Z. Ahmad, J. Bhadra, N. J. Al-Thani, Microstructure and mechanical properties of aluminum matrix composites with bimodal-sized hybrid NbC-B4C reinforcements, Mater. Today Commun. 33 (2022) 104512.

DOI: 10.1016/j.mtcomm.2022.104512

Google Scholar

[10] B.A. Kumar, I. Dinaharan, N. Murugan, Microstructural, mechanical and wear properties of friction stir welded AA6061/AlNp composite joints. J. Mater. Eng. Perform, 31 (2022) 651-666.

DOI: 10.1007/s11665-021-06181-6

Google Scholar

[11] J.J. Moses, I. Dinaharan, S.J. Sekhar, Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting. Trans. Nonferrous Met. Soc. China 26 (2016) 1498-1511.

DOI: 10.1016/s1003-6326(16)64256-5

Google Scholar

[12] S. Soltani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, Stir casting process for manufacture of Al–SiC composites, Rare Met. 36 (2017) 581-590.

DOI: 10.1007/s12598-015-0565-7

Google Scholar

[13] R.K. Arya, A. Telang, Silicon nitride as a reinforcement for aluminium metal matrix composites to enhance microstructural, mechanical and tribological behavior, Int. J. Eng. Adv. Technol. 9 (2020) 3366-3374.

DOI: 10.35940/ijeat.c6032.029320

Google Scholar

[14] J. Fayomi, A.P.I. Popoola, O.M. Popoola, Understanding the microstructural evolution, mechanical properties, and tribological behavior of AA8011-reinforced nano-Si3N4 for automobile application, Int. J. Adv. Manuf. Technol. 111 (2020) 53–62.

DOI: 10.1007/s00170-020-06054-7

Google Scholar

[15] B. Ashok Kumar, M. Muthu Krishnan, A. Felix Sahayaraj, Characterization of the aluminium matrix composite reinforced with silicon nitride (AA6061/Si3N4) synthesized by the stir casting route, Adv. Mater. Sci. Eng. 2022 (2022) 1 – 8.

DOI: 10.1155/2022/8761865

Google Scholar

[16] V. Bharath, M. Nagaral, V. Auradi, Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties, Proc. Mater. Sci. 6 (2014) 1658-1667.

DOI: 10.1016/j.mspro.2014.07.151

Google Scholar

[17] V.K. Sharma, V. Kumar, R.S. Joshi, Manufacturing of stable hydrophobic surface on rare-earth oxides aluminium hybrid composite, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235 (2021) 899-912.

DOI: 10.1177/0954408920979105

Google Scholar

[18] D.R. Eddy, F.N. Puri, A.R. Noviyanti, Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst, Proc. Chem. 17 (2015) 55-58.

DOI: 10.1016/j.proche.2015.12.132

Google Scholar

[19] M. J. Rampe, J. Z. Lombok, V. A. Tiwow, S. M. T. Tengker, J. Bua, Characterization of silica (SiO2) based on beach sand from Sulawesi and Sumatra as silicon carbide (SiC) base material, J. Chem. Technol. Metall. 58 (2023) 467-476.

DOI: 10.59957/jctm.v58i3.75

Google Scholar

[20] M.J. Rampe, J.Z. Lombok, V.A. Tiwow, Characterization of silica (SiO2) based on beach sand from sulawesi and sumatra as silicon carbide (SiC) base material, J. Chem. Technol. Metall. 58 (2023).

DOI: 10.59957/jctm.v58i3.75

Google Scholar

[21] D.F. Adams, L.A. Carlsson, R.B. Pipes, Experimental characterization of advanced composite materials (3rd ed.). Florida, USA: CRC Press LLC, 2003.

Google Scholar

[22] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[23] H. Nili, S. Walia, M. Bhaskaran, Nanoscale electro-mechanical dynamics of nano-crystalline platinum thin films: An in situ electrical nanoindentation study, J. Appl. Phys. 116 (2014).

DOI: 10.1063/1.4899194

Google Scholar

[24] N. Savvides T.J. Bell, Microhardness and Young's modulus of diamond and diamondlike carbon films, J. Appl. Phys. 72 (1992) 2791-2796.

DOI: 10.1063/1.351530

Google Scholar

[25] M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res. 1 (1986) 601-609.

DOI: 10.1557/jmr.1986.0601

Google Scholar

[26] U.O. Uyor, A.P.I. Popoola, O.M. Popoola, Tribological and nanomechanical responses of 3D microstructured polypropylene matrix using interpenetrated graphene-carbon nanotubes, J. Thermoplast. Compos. Mater. 36 (2023) 673-690.

DOI: 10.1177/08927057211028639

Google Scholar

[27] A.M.S. Hamouda, S. Sulaiman, T.R. Vijayaram, Processing and characterisation of particulate reinforced aluminium silicon matrix composite, J. Achiev. Mater. Manuf. Eng. 25 (2007) 11-16.

Google Scholar

[28] J. Fayomi, A.P.I. Popoola, O.P. Oladijo, Experimental study of ZrB2-Si3N4 on the microstructure, mechanical and electrical properties of high grade AA8011 metal matrix composites, J. Alloys Compd. 790 (2019) 610-615.

DOI: 10.1016/j.jallcom.2019.03.112

Google Scholar

[29] K.K. Singh, S. Singh, A.K. Shrivastava, Study of tribological behavior of silicon carbide based aluminum metal matrix composites under dry and lubricated environment. Adv Mater Sci Eng 2016; 2016.

DOI: 10.1155/2016/3813412

Google Scholar

[30] G. Nageswaran, S. Natarajan, K.R. Ramkumar, Synthesis, structural characterization, mechanical and wear behaviour of Cu-TiO2-Gr hybrid composite through stir casting technique, J. Alloys Compd. 768 (2018) 733-741.

DOI: 10.1016/j.jallcom.2018.07.288

Google Scholar

[31] C. García-Cordovilla, E. Louis, Thermal analysis of aluminum alloys. In Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print), (2018), (pp.2649-2679). CRC Press.

DOI: 10.1201/9781351045636-140000445

Google Scholar

[32] V. Bharath, M. Nagaral, V. Auradi, S.A. Kori, Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties, Proc. Mater. Sci. 6 (2014) 1658-1667.

DOI: 10.1016/j.mspro.2014.07.151

Google Scholar

[33] A. Urena, J. Rams, M.D. Escalera, Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique. Compos. Sci. Technol. 65 (2005) 2025-2038.

DOI: 10.1016/j.compscitech.2005.04.013

Google Scholar

[34] S.Y. Fu, C.Y. Yue, X. Hu, On the elastic stress transfer and longitudinal modulus of unidirectional multi-short-fiber composites, Compos. Sci. Technol. 60 (2000) 3001-3012.

DOI: 10.1016/s0266-3538(00)00173-1

Google Scholar

[35] A. M. Sankhla, K. M. Patel, M. A. Makhesana, K. Giasin, D. Y. Pimenov, S. Wojciechowski, N. Khanna, Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route. J. Mater. Res. Technol. 18 (2022) 282-292.

DOI: 10.1016/j.jmrt.2022.02.094

Google Scholar

[36] A. Mussatto, I.U. Ahad, R.T. Mousavian, Advanced production routes for metal matrix composites, Eng. Reports 3 (2021) e12330.

DOI: 10.1002/eng2.12330

Google Scholar

[37] M. Azadi, M. Zolfaghari, S. Rezanezhad, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl. Phys. A, 124 (2018) 1-13.

DOI: 10.1007/s00339-018-1797-9

Google Scholar

[38] K.L. Zheng, P.F. Yan, X.S. Wei, Study of the nano-network structure in the friction transfer film of the hybrid reinforced aluminum-based composite. Wear 494 (2022) 204268.

DOI: 10.1016/j.wear.2022.204268

Google Scholar

[39] A.C. Dixit, B. Harshavardhan, R. Shivashankar, Effect of dry sliding wear parameters on the tribological behavior of aluminum hybrid metal matrix composites, Mater. Today Proc. 43 (2021) 2194-2197.

DOI: 10.1016/j.matpr.2020.12.113

Google Scholar

[40] D.X. Peng, Y. Kang, R.M. Hwang, S. S. Shyr, Y. P. Chang, Tribological properties of diamond and SiO2 nanoparticles added in paraffin, Tribol. Int. 42 (2009) 911-917.

DOI: 10.1016/j.triboint.2008.12.015

Google Scholar

[41] Y.Y. Bao, J.L. Sun, L.H. Kong, Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. In IOP Conference Series: Mater. Sci. Eng. 182 (2017) 012025, IOP Publishing.

DOI: 10.1088/1757-899x/182/1/012025

Google Scholar

[42] N. Valizade, Z. Farhat, A review on abrasive wear of aluminum composites: Mechanisms and influencing factors, J. Compos. Sci. 8 (2024) 149.

DOI: 10.3390/jcs8040149

Google Scholar

[43] N. Fuyama, K. Okada, T. Nagaoka, A. Nishimoto, Improvement of surface properties of aluminum alloy-based composites by multi-layer DLC coating, Mater. Trans. 63 (2022) 1462-1468.

DOI: 10.2320/matertrans.mt-l2022011

Google Scholar

[44] D.A. Ashebir, G.A. Mengesha, D.K. Sinha, Y. B. Bereda, Tribological and corrosion characteristics of tetra hybrid particulate-reinforced aluminum composites for aerospace and automotive applications, J. Compos. Mater. 57 (2023) 4439-4461.

DOI: 10.1177/00219983231210354

Google Scholar

[45] V.K. Sharma, V. Kumar, R.S. Joshi Effect of RE addition on wear behavior of an Al-6061 based hybrid composite, Wear, 426 (2019) 961-974.

DOI: 10.1016/j.wear.2019.01.044

Google Scholar

[46] M. Imran, A.A. Khan, S. Megeri, S. Sadik, Study of hardness and tensile strength of Aluminium-7075 percentage varying reinforced with graphite and bagasse-ash composites, Resource-Efficient Technol 2 (2016) 81-88.

DOI: 10.1016/j.reffit.2016.06.007

Google Scholar

[47] F. Khodabakhshi, A. Simchi, The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater. Des. 130 (2017) 26-36.

DOI: 10.1016/j.matdes.2017.05.047

Google Scholar

[48] A. Nieto, H. Yang, L. Jiang, J. M. Schoenung, Reinforcement size effects on the abrasive wear of boron carbide reinforced aluminum composites. Wear 390 (2017) 228-235.

DOI: 10.1016/j.wear.2017.08.002

Google Scholar