[1]
J. Pastuszak, P. Węgierek, Photovoltaic Cell Generations and Current Research Directions for Their Development, Mater. 15,5542. (2022)
DOI: 10.3390/ma15165542
Google Scholar
[2]
R.A. Afre, D. Pugliese, Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies, Micromachines. 15,192. (2024)
DOI: 10.3390/mi15020192
Google Scholar
[3]
Y. Shouwu, P. Liu, S. Xiao, A review of main characterization methods for identifying two-dimensional organic–inorganic halide perovskites. J.Mater. Sci. 56 (2021)
DOI: 10.1007/s10853-021-06038-2
Google Scholar
[4]
A. Yadegarifard, H. Lee, H.J. Seok, I. Kim, B.K. Ju, H.K. Kim, D.K. Lee, FA/Cs-based mixed Pb–Sn perovskite solar cells: A review of recent advances in stability and efficiency, Nano Energy. 112,108481, (2023)
DOI: 10.1016/j.nanoen.2023.108481
Google Scholar
[5]
C. Kyungtaek, P. Sanghyun, G. Giulia, C. Cristina, G. Peng, L. Yonghui, N. Mohammad, Highly efficient perovskite solar cells with a compositional engineered perovskite/hole transporting material interface, . Energy. Environ. Sci. (2017)
DOI: 10.1039/c6ee03182j
Google Scholar
[6]
SA. Khan, N.Z. Khan, M. Sohail, M. Runowski, X. Xu, S. Agathopoulos, Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications, Mater.Today Phys. 34,101079. (2023)
DOI: 10.1016/j.mtphys.2023.101079
Google Scholar
[7]
H. Arbouz, Simulation study of single solar cell structures based on the compositionally variable perovskite material CsSn(I1−xBrx)3 for tandem configured solar cells, J.Eng. Res. (2023)
DOI: 10.1016/j.jer.2023.09.030
Google Scholar
[8]
H. Arbouz, Optimization of lead-free CsSnI3-based perovskite solar cell structure, Appl. Rheol. 33,1, 20220138. (2023)
Google Scholar
[9]
E.K. Ashebir, B.T. Abay, T.A. Berhe, Sustainable A2BⅠBⅢX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement,. AIMS. Mater. Sci. 11,4 (2024) 712-759.
DOI: 10.3934/matersci.2024036
Google Scholar
[10]
S. Ahmed, F. Jannat, M.A.K. Khan, M.A. Alim, Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D, Optik. 225,165765. (2021)
DOI: 10.1016/j.ijleo.2020.165765
Google Scholar
[11]
H. Sabbah, Z. Abdel Baki, R. Mezher, J. Arayro, SCAPS-1D Modeling of Hydrogenated Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cells with a Remarkable Efficiency of 26.3, Nanomaterials. 14,1,48.(2023)
DOI: 10.3390/nano14010048
Google Scholar
[12]
H. Wang, C. Zhao, L. Yin, X. Li, X. Tu, E.G. Lim, Y. Liu, C. Z. Zhao, W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells, Appl. Surf. Sci. 563,150298. (2021)
DOI: 10.1016/j.apsusc.2021.150298
Google Scholar
[13]
A. Kale, R. Chaurasiya, A. Dixit, Inorganic Lead-Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single-Junction Solar Cells with 22.18% Power Conversion Efficienc, Adv. Theory Simul. 4,3. (2021).
DOI: 10.1002/adts.202000224
Google Scholar
[14]
K. Chandrasekar,A. Dheebanathan, S. Muthamizh, D. Tukaram, A. Majed, K. Arul, MoS2 as an alternate for Spiro-OMeTAD HTL in high-efficiency perovskite photovoltaics: simulation and experimental results analysis. Journal of Materials Science: Materials in Electronics. 35,30. (2024)
DOI: 10.1007/s10854-024-13697-9
Google Scholar
[15]
E. Danladi, P.M. Gyuk, N.N. Tasie, A.C. Egbugha, D. Behera, I. Hossain, I.M. Bagudo, M. L. Madugu, J.T. Ikyumbur, Impact of hole transport material on perovskite solar cells with different metal electrode: A SCAPS-1D simulation insight, Heliyon. 9,6, (2023)
DOI: 10.1016/j.heliyon.2023.e16838
Google Scholar
[16]
W. Ting Feng, L. Shuang, W. Hong-En, Improving the Photoelectric Conversion Efficiency of Cs2TiBr6-based Perovskite Solar Cells Using a Theoretical Simulation Method, ENERG FUEL.38,11.(2024)
DOI: 10.21203/rs.3.rs-3877780/v1
Google Scholar
[17]
A. Benmir, M.S. Aida,Analytical Modeling and Simulation of CIGS Solar Cells,Energy Procedia. 36 (2013) 618-627.
DOI: 10.1016/j.egypro.2013.07.071
Google Scholar
[18]
A. Kumar, S.K. Gupta, B.P. Dhamaniya, S.K. Pathak, S. Karak, Understanding the origin of defect states, their nature, and effects on metal halide perovskite solar cells, Mater. Today Energy. 37, (2023)
DOI: 10.1016/j.mtener.2023.101400
Google Scholar
[19]
A.A. Luna, R.B. Correa, J.M. Monsalve, A.M. Acevedo, Design of thin film solar cells based on a unified simple analytical model. J. Appl. Res. and Technol. 15,6. (2019)
DOI: 10.1016/j.jart.2017.08.002
Google Scholar
[20]
J. Wang , Open-circuit voltage, fill factor, and heterojunction band offset in semiconductor diode solar cells, EcoMat. 4,6.(2022)
DOI: 10.1002/eom2.12263
Google Scholar
[21]
A.J Kale, R. Chaurasiya, A. Dixit, Inorganic Lead-Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single-Junction Solar Cells with 22.18% Power Conversion Efficiency, Adv. Theory Simul. 4, 2000224. (2021)
DOI: 10.1002/adts.202000224
Google Scholar
[22]
M. Ismail, M. Noman, S.J Tariq, M. Imran, Boosting efficiency of ecofriendly perovskite solar cell through optimization of novel charge transport layers, R. Soc. Open Sci. 10, 230331. (2023)
DOI: 10.1098/rsos.230331
Google Scholar
[23]
M. K. Hossain, D. Samajdar, R.C. Das, A.A. Arnab, Md. Rahman, M.H.K. Rubel,Md.R. Islam, H. Bencherif, R. Pandey, M.J. Rahul, M. K.A. Mohammed, Design and Simulation of Cs2BiAgI6 Double Perovskite Solar Cells with Different Electron Transport Layers for Efficiency Enhancement, Energ. Fuel. 37(2023) 3957–3979.
DOI: 10.1021/acs.energyfuels.3c00181
Google Scholar
[24]
A. Waqar, N. Muhammad, J. Shayan, K. Adnan, Performance analysis and optimization of inverted inorganic CsGeI3 perovskite cells with carbon/copper charge transport materials using SCAPS-1D, R. Soc. Open Sci. 15,10,3,221127. (2023)
DOI: 10.1098/rsos.221127
Google Scholar
[25]
R.A. Afre, D. Pugliese, Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies, Micromachines. 15,192. (2024)
DOI: 10.3390/mi15020192
Google Scholar
[26]
A. Ullah, B. Hussain, M. Waqar, M. R. Khan, J. Jehanzeb, K. Alam, P. Rosaiah, M. A. Annu, B. Akkinepally, I. Hussain, Synergistic effects of carbon nanotubes on α-MnO2 electrocatalysts for improved oxygen reduction in alkaline fuel cells, Diam. Relat. Mater. 149,111611. (2024)
DOI: 10.1016/j.diamond.2024.111611
Google Scholar
[27]
Kale, Abhijeet & Chaurasiya, Rajneesh & Dixit, Ambesh. (2021). Inorganic Lead‐Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single‐Junction Solar Cells with 22.18% Power Conversion Efficiency. Advanced Theory and Simulations. 4.
DOI: 10.1002/adts.202000224
Google Scholar
[28]
P. Kumar, S. Thokala, S. Prakash Singh, R. Singh, Research progress and challenges in extending the infra-red absorption of perovskite tandem solar cells, Nano Energy. 121,109175. (2024)
DOI: 10.1016/j.nanoen.2023.109175
Google Scholar
[29]
B. Bibi, B. Farhadi, W.U. Rahman, A. Liu, Numerical modeling and performance analysis of a novel Cd-free all-Kesterite tandem solar cell using SCAPS-1D, Next Materials. 2,100068. (2024)
DOI: 10.1016/j.nxmate.2023.100068
Google Scholar
[30]
A. Singh, M. Chauhan, S. Patel, R.S. Singh, V. Singh, MAPbI3-on-CuInSe2 two-terminal monolithically integrated and four-terminal mechanically stacked tandem solar cells: A Theoretical Investigation Using SCAPS-1D, Results Opt. 10,100358. (2023)
DOI: 10.1016/j.rio.2023.100358
Google Scholar