Optimization Study of Single Junction Structures Utilizing 1.12 eV Cs2AuBiCl6 Double Perovskite: A Lead-Free Inorganic Absorber for Single and Tandem Solar Cell Applications

Article Preview

Abstract:

This study investigates the modeling and optimization of a single solar cell structure, utilizing the inorganic double perovskite Cs₂AuBiCl₆. This material features an A₂BB'X₆ composition and possesses a bandgap energy of 1.12 eV. The fundamental structure of the solar cell has been described, and the physical parameters of its primary layers have been outlined. A simulation model was developed to calculate the current-voltage characteristics and photovoltaic parameters, taking into account recombination rates due to defects within the absorber and at the interfaces with the electron transport layer (ETL) and hole transport layer (HTL). The influence of various parameters was analyzed, including bulk and interface density of defects, layer thicknesses, back contact work function and operating temperature. Additionally, the performance of structures with alternative transport materials for the ETL and HTL layers was evaluated. The impact of energy bandgap offsets with the absorbing perovskite layer was considered to identify materials that enhance the collection of photogenerated carriers and ultimately improve efficiency. The simulations revealed an optimized structure that demonstrated enhanced performance compared to the initial design. The optimized solar cell achieved a yield of 18.4 %, representing an increase of 5.4 % over the basic structure, with key performance metrics including, short-circuit current density Jsc = 36.75 mA/cm², fill factor FF = 76.76 %, open-circuit voltage Voc = 0.5879 V. Given its narrow bandgap value, the optimized structure was further examined in a tandem cell configuration, showcasing its potential for high-efficiency devices with a yield reaching 33 %. This work significantly contributes to the development of efficient, stable, and non-toxic perovskite solar cells for photovoltaic applications, paving the way for advancements in sustainable energy technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-53

Citation:

Online since:

December 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Pastuszak, P. Węgierek, Photovoltaic Cell Generations and Current Research Directions for Their Development, Mater. 15,5542. (2022)

DOI: 10.3390/ma15165542

Google Scholar

[2] R.A. Afre, D. Pugliese, Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies, Micromachines. 15,192. (2024)

DOI: 10.3390/mi15020192

Google Scholar

[3] Y. Shouwu, P. Liu, S. Xiao, A review of main characterization methods for identifying two-dimensional organic–inorganic halide perovskites. J.Mater. Sci. 56 (2021)

DOI: 10.1007/s10853-021-06038-2

Google Scholar

[4] A. Yadegarifard, H. Lee, H.J. Seok, I. Kim, B.K. Ju, H.K. Kim, D.K. Lee, FA/Cs-based mixed Pb–Sn perovskite solar cells: A review of recent advances in stability and efficiency, Nano Energy. 112,108481, (2023)

DOI: 10.1016/j.nanoen.2023.108481

Google Scholar

[5] C. Kyungtaek, P. Sanghyun, G. Giulia, C. Cristina, G. Peng, L. Yonghui, N. Mohammad, Highly efficient perovskite solar cells with a compositional engineered perovskite/hole transporting material interface, . Energy. Environ. Sci. (2017)

DOI: 10.1039/c6ee03182j

Google Scholar

[6] SA. Khan, N.Z. Khan, M. Sohail, M. Runowski, X. Xu, S. Agathopoulos, Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications, Mater.Today Phys. 34,101079. (2023)

DOI: 10.1016/j.mtphys.2023.101079

Google Scholar

[7] H. Arbouz, Simulation study of single solar cell structures based on the compositionally variable perovskite material CsSn(I1−xBrx)3 for tandem configured solar cells, J.Eng. Res. (2023)

DOI: 10.1016/j.jer.2023.09.030

Google Scholar

[8] H. Arbouz, Optimization of lead-free CsSnI3-based perovskite solar cell structure, Appl. Rheol. 33,1, 20220138. (2023)

Google Scholar

[9] E.K. Ashebir, B.T. Abay, T.A. Berhe, Sustainable A2BⅠBⅢX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement,. AIMS. Mater. Sci. 11,4 (2024) 712-759.

DOI: 10.3934/matersci.2024036

Google Scholar

[10] S. Ahmed, F. Jannat, M.A.K. Khan, M.A. Alim, Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D, Optik. 225,165765. (2021)

DOI: 10.1016/j.ijleo.2020.165765

Google Scholar

[11] H. Sabbah, Z. Abdel Baki, R. Mezher, J. Arayro, SCAPS-1D Modeling of Hydrogenated Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cells with a Remarkable Efficiency of 26.3, Nanomaterials. 14,1,48.(2023)

DOI: 10.3390/nano14010048

Google Scholar

[12] H. Wang, C. Zhao, L. Yin, X. Li, X. Tu, E.G. Lim, Y. Liu, C. Z. Zhao, W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells, Appl. Surf. Sci. 563,150298. (2021)

DOI: 10.1016/j.apsusc.2021.150298

Google Scholar

[13] A. Kale, R. Chaurasiya, A. Dixit, Inorganic Lead-Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single-Junction Solar Cells with 22.18% Power Conversion Efficienc, Adv. Theory Simul. 4,3. (2021).

DOI: 10.1002/adts.202000224

Google Scholar

[14] K. Chandrasekar,A. Dheebanathan, S. Muthamizh, D. Tukaram, A. Majed, K. Arul, MoS2 as an alternate for Spiro-OMeTAD HTL in high-efficiency perovskite photovoltaics: simulation and experimental results analysis. Journal of Materials Science: Materials in Electronics. 35,30. (2024)

DOI: 10.1007/s10854-024-13697-9

Google Scholar

[15] E. Danladi, P.M. Gyuk, N.N. Tasie, A.C. Egbugha, D. Behera, I. Hossain, I.M. Bagudo, M. L. Madugu, J.T. Ikyumbur, Impact of hole transport material on perovskite solar cells with different metal electrode: A SCAPS-1D simulation insight, Heliyon. 9,6, (2023)

DOI: 10.1016/j.heliyon.2023.e16838

Google Scholar

[16] W. Ting Feng, L. Shuang, W. Hong-En, Improving the Photoelectric Conversion Efficiency of Cs2TiBr6-based Perovskite Solar Cells Using a Theoretical Simulation Method, ENERG FUEL.38,11.(2024)

DOI: 10.21203/rs.3.rs-3877780/v1

Google Scholar

[17] A. Benmir, M.S. Aida,Analytical Modeling and Simulation of CIGS Solar Cells,Energy Procedia. 36 (2013) 618-627.

DOI: 10.1016/j.egypro.2013.07.071

Google Scholar

[18] A. Kumar, S.K. Gupta, B.P. Dhamaniya, S.K. Pathak, S. Karak, Understanding the origin of defect states, their nature, and effects on metal halide perovskite solar cells, Mater. Today Energy. 37, (2023)

DOI: 10.1016/j.mtener.2023.101400

Google Scholar

[19] A.A. Luna, R.B. Correa, J.M. Monsalve, A.M. Acevedo, Design of thin film solar cells based on a unified simple analytical model. J. Appl. Res. and Technol. 15,6. (2019)

DOI: 10.1016/j.jart.2017.08.002

Google Scholar

[20] J. Wang , Open-circuit voltage, fill factor, and heterojunction band offset in semiconductor diode solar cells, EcoMat. 4,6.(2022)

DOI: 10.1002/eom2.12263

Google Scholar

[21] A.J Kale, R. Chaurasiya, A. Dixit, Inorganic Lead-Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single-Junction Solar Cells with 22.18% Power Conversion Efficiency, Adv. Theory Simul. 4, 2000224. (2021)

DOI: 10.1002/adts.202000224

Google Scholar

[22] M. Ismail, M. Noman, S.J Tariq, M. Imran, Boosting efficiency of ecofriendly perovskite solar cell through optimization of novel charge transport layers, R. Soc. Open Sci. 10, 230331. (2023)

DOI: 10.1098/rsos.230331

Google Scholar

[23] M. K. Hossain, D. Samajdar, R.C. Das, A.A. Arnab, Md. Rahman, M.H.K. Rubel,Md.R. Islam, H. Bencherif, R. Pandey, M.J. Rahul, M. K.A. Mohammed, Design and Simulation of Cs2BiAgI6 Double Perovskite Solar Cells with Different Electron Transport Layers for Efficiency Enhancement, Energ. Fuel. 37(2023) 3957–3979.

DOI: 10.1021/acs.energyfuels.3c00181

Google Scholar

[24] A. Waqar, N. Muhammad, J. Shayan, K. Adnan, Performance analysis and optimization of inverted inorganic CsGeI3 perovskite cells with carbon/copper charge transport materials using SCAPS-1D, R. Soc. Open Sci. 15,10,3,221127. (2023)

DOI: 10.1098/rsos.221127

Google Scholar

[25] R.A. Afre, D. Pugliese, Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies, Micromachines. 15,192. (2024)

DOI: 10.3390/mi15020192

Google Scholar

[26] A. Ullah, B. Hussain, M. Waqar, M. R. Khan, J. Jehanzeb, K. Alam, P. Rosaiah, M. A. Annu, B. Akkinepally, I. Hussain, Synergistic effects of carbon nanotubes on α-MnO2 electrocatalysts for improved oxygen reduction in alkaline fuel cells, Diam. Relat. Mater. 149,111611. (2024)

DOI: 10.1016/j.diamond.2024.111611

Google Scholar

[27] Kale, Abhijeet & Chaurasiya, Rajneesh & Dixit, Ambesh. (2021). Inorganic Lead‐Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single‐Junction Solar Cells with 22.18% Power Conversion Efficiency. Advanced Theory and Simulations. 4.

DOI: 10.1002/adts.202000224

Google Scholar

[28] P. Kumar, S. Thokala, S. Prakash Singh, R. Singh, Research progress and challenges in extending the infra-red absorption of perovskite tandem solar cells, Nano Energy. 121,109175. (2024)

DOI: 10.1016/j.nanoen.2023.109175

Google Scholar

[29] B. Bibi, B. Farhadi, W.U. Rahman, A. Liu, Numerical modeling and performance analysis of a novel Cd-free all-Kesterite tandem solar cell using SCAPS-1D, Next Materials. 2,100068. (2024)

DOI: 10.1016/j.nxmate.2023.100068

Google Scholar

[30] A. Singh, M. Chauhan, S. Patel, R.S. Singh, V. Singh, MAPbI3-on-CuInSe2 two-terminal monolithically integrated and four-terminal mechanically stacked tandem solar cells: A Theoretical Investigation Using SCAPS-1D, Results Opt. 10,100358. (2023)

DOI: 10.1016/j.rio.2023.100358

Google Scholar