Development of Eco-Friendly Biomaterials: Recycled Thermoplastics Reinforced with Short Natural Cane and Palm Fibers

Article Preview

Abstract:

In this study, the behavior of biocomposites reinforced with natural fibers from African palm and sugar cane in a recycled polyethylene matrix is investigated. The aim is to analyze the rheological and mechanical properties of these materials to optimize their processability by injection. Natural fibers treated through a steam explosion process and subsequent drying and grinding were used to obtain a size suitable for extrusion. Biocomposites with different percentages of fiber (30% and 40%) were prepared and evaluated by melt flow index (MFI) and capillary rheometry tests. The results indicated a significant reduction in material fluidity with increasing fiber content, which was mitigated by the addition of a lubricant additive, stearic acid. Simulation of the injection process made it possible to determine crucial parameters such as injection pressure and filling time. Subsequently, injection tests were carried out varying the temperature and fiber concentration, followed by tensile tests to evaluate the mechanical resistance of the injected specimens. The results showed that the addition of the additive significantly improved the fluidity of the material, facilitating its injection without damaging the machinery and maintaining good mechanical properties. This study provides a solid foundation for the development of biocomposites eco-friendly with potential applications in the plastics industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Elfaleh, F. Abbassi, M. Habibi, F. Ahmad, M. Guedri, M. Nasri, C. Garnier, A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials, Results in Engineering (2023) 101271.

DOI: 10.1016/j.rineng.2023.101271

Google Scholar

[2] M.Y. Khalid, A. Al Rashid, Z.U. Arif, W. Ahmed, H. Arshad, A.A. Zaidi, Natural fiber reinforced composites: Sustainable materials for emerging applications, Results in Engineering 11 (2021) 100263.

DOI: 10.1016/j.rineng.2021.100263

Google Scholar

[3] F. Vilaplana, S. Karlsson, Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review, Macro Materials & Eng 293 (2008) 274–297.

DOI: 10.1002/mame.200700393

Google Scholar

[4] Y. Kumar Yadav, S. Dixit, G. Dixit, A. Namdev, M. Baghel, A. Kumar, Fabrication and mechanical behavior of date palm fibers reinforced high performance polymer composite, Materials Today: Proceedings 82 (2023) 340–345.

DOI: 10.1016/j.matpr.2023.02.147

Google Scholar

[5] S. Awad, Y. Zhou, E. Katsou, M. Fan, Polymer Matrix Systems Used for Date Palm Composite Reinforcement, in: M. Midani, N. Saba, O.Y. Alothman (Eds.), Date Palm Fiber Composites, Springer Singapore, Singapore, 2020: p.119–159.

DOI: 10.1007/978-981-15-9339-0_4

Google Scholar

[6] S. Tayde, A. Satdive, B. Toksha, A. Chatterjee, Polyester Resins and Their Use as Matrix Material in Polymer Composites: An Overview, Polyester-Based Biocomposites (2023) 1–23.

DOI: 10.1201/9781003270980-1

Google Scholar

[7] E. Ligowski, B.C. dos Santos, S.T. Fujiwara, Materiais compósitos a base de fibras da cana-de-açúcar e polímeros reciclados obtidos através da técnica de extrusão, Polímeros 25 (2015) 70–75.

DOI: 10.1590/0104-1428.1605

Google Scholar

[8] S. Begum, S. Fawzia, M.S.J. Hashmi, Polymer matrix composite with natural and synthetic fibres, Advances in Materials and Processing Technologies 6 (2020) 547–564.

DOI: 10.1080/2374068X.2020.1728645

Google Scholar

[9] C. Zhang, Y. Li, W. Kang, X. Liu, Q. Wang, Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices, SusMat 1 (2021) 127–147.

DOI: 10.1002/sus2.11

Google Scholar

[10] G.H. de A. Barbalho, J.J. da S. Nascimento, L.B. da Silva, R.S. Gomez, D.O. de Farias, D.D.S. Diniz, R.S. Santos, M.J. de Figueiredo, A.G.B. de Lima, Bio-polyethylene composites based on sugar cane and Curauá fiber: an experimental study, Polymers 15 (2023) 1369.

DOI: 10.3390/polym15061369

Google Scholar

[11] D.F. Alvarez Reyes, Characterization of the cashew nut shell as possible source of natural fibers for composite materials applications., (2021).

Google Scholar

[12] K.C. Córdova-Cisneros, A.O. Castañeda-Facio, A. Sáenz-Galindo, Eco-materiales Compuestos Poliméricos con Aplicaciones en el Área Automotriz, Revista Científica de La Universidad Autónoma de Coahuila 10 (2018).

DOI: 10.17488/rmib.45.2.3

Google Scholar

[13] M. Ali, A.H. Al-Assaf, M. Salah, Date Palm Fiber-Reinforced Recycled Polymer Composites: Synthesis and Characterization, Advances in Polymer Technology 2022 (2022) 1–10.

DOI: 10.1155/2022/7957456

Google Scholar

[14] C. Fonseca-Valero, A. Ochoa-Mendoza, J. Arranz-Andrés, C. González-Sánchez, Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites, Composites Part A: Applied Science and Manufacturing 69 (2015) 94–104.

DOI: 10.1016/j.compositesa.2014.11.009

Google Scholar

[15] S. Oza, R. Wang, N. Lu, Thermal and mechanical properties of recycled high density polyethylene/hemp fiber composites, International Journal of Applied Science and Technology 1 (2011).

Google Scholar

[16] S. Mohammed, A. Meghezzi, Y. Meftah, S. Maou, Thermophysical behavior of date palm fiber-reinforced polyvinylchloride/low-density polyethylene/acrylonitrile butadiene rubber copolymer ternary composite, Polyolefins Journal 10 (2023) 225–233.

DOI: 10.17932/ejeas.2021.024/ejeas_v03i2005

Google Scholar

[17] J. Fajardo, D. Lasso, C. Paltán, L. López, D. Perguachi, L. Cruz, Improving the processing and rheological properties of natural fibre/polypropylene composites, Cuenca, Ecuador: Professor Dept. of Mechanical Engineering, Universidad., 2015.

Google Scholar

[18] J.I. Fajardo, J. Santos, L. Garzón, L.J. Cruz, Factorial study of process parameters on the orientation state of injected bamboo fibre/polypropylene composite parts, OTTAWA, 2015.

Google Scholar

[19] J.D. Santos, J.I. Fajardo, A.R. Cuji, J.A. García, L.E. Garzón, L.M. López, Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers, Front. Mech. Eng. 10 (2015) 287–293.

DOI: 10.1007/s11465-015-0346-x

Google Scholar

[20] C.P. Jorge Fajardo, Rheological behavior of bio-based composite: natural fibre/polypropylene., in: Guayaquil - Ecuador, 2019.

Google Scholar

[21] J.I. Fajardo, C. Paltán, L.M. López, Estimation of injection parameters of a bio-based composite material from the rheological characterization, J. Phys.: Conf. Ser. 1386 (2019) 012037.

DOI: 10.1088/1742-6596/1386/1/012037

Google Scholar

[22] J.I. Fajardo, M.V. Farez, C.A. Paltán, Experimental analysis of the Relationship between textile structure, tensile strength and comfort in 3D printed structured fabrics, Polymers 15 (2022) 152.

DOI: 10.3390/polym15010152

Google Scholar

[23] W. Guamán, J.I. Fajardo, C.A. Paltán, Micromechanical Modeling of Biobased Sisal Polylactic Acid Compounds, in: Systems, Smart Technologies and Innovation for Society, Springer Nature Switzerland, Cham, 2024: p.40–49.

DOI: 10.1007/978-3-031-51982-6_4

Google Scholar