The Role of Gamma Irradiation in the Remediation of Hexachlorobenzene: A Study in 2-Propanol

Article Preview

Abstract:

This study demonstrates the effective dechlorination of hexachlorobenzene (HCB) in 2-propanol using γ-irradiation from a 60Co source, showcasing the potential of radiolysis for persistent organic pollutants (POPs) remediation. Utilizing Gas Chromatography-Mass Spectrometry (GC-MS), we achieved nearly 100% degradation of HCB, quantifying and identifying the breakdown products throughout the process. The kinetic analysis revealed that HCB consumption follows pseudo-first-order kinetics, with an effective rate constant of 4 x 10⁻⁵ L mol⁻¹ s⁻¹. Our findings indicate a systematic reduction in HCB to less chlorinated benzenes (CBs), including penta-(PCB), tetra-(TeCB), and trichlorobenzene (TCB), as confirmed by the mass spectra. The full pathway of HCB degradation involves sequential dechlorination steps: starting from HCB, it is first reduced to PCB, followed by TeCB, and then TCB. Although dichlorobenzenes (DCB), monochlorobenzene (MCB), and benzene formation are theoretically predicted, they were not detected in our experiments. The detailed examination of the radiation chemical yield (G value), the degree of consumption, and the concentration change as a function of absorbed dose highlights the robust capability of γ-radiolysis in the targeted decomposition of chlorinated compounds. These results underscore γ-radiolysis as a highly efficient method for the remediation of POPs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-99

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Wang, Y. Lu, J. Han, W. Luo, Y. Shi, T. Wang, and Y. Sun, Hexachlorobenzene sources, levels and human exposure in the environment of China, Environment International, 36(1) (2010) 122–130.

DOI: 10.1016/j.envint.2009.08.005

Google Scholar

[2] M. Matei, R. Zaharia, S. Petrescu, C. G. Radu-Rusu, D. Simeanu, D. Mierliță, and I. M. Pop, Persistent organic pollutants (POPs): A review focused on occurrence and incidence in animal feed and cow milk, Agriculture, 13(4) (2023) 873.

DOI: 10.3390/agriculture13040873

Google Scholar

[3] M. Wang, L. Yang, X. Liu, Z. Wang, G. Liu, and M. Zheng, Hexachlorobutadiene emissions from typical chemical plants, Frontiers of Environmental Science & Engineering, 15(4) (2020).

DOI: 10.1007/s11783-020-1352-8

Google Scholar

[4] J. A. Kumar, T. Krithiga, S. Sathish, A. A. Renita, D. Prabu, S. Lokesh, R. Geetha, S. K. R. Namasivayam, and M. Sillanpää, Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis, Science of the Total Environment, 831 (2022) 154808.

DOI: 10.1016/j.scitotenv.2022.154808

Google Scholar

[5] N. Gaur, D. Dutta, A. Jaiswal, R. Dubey, and D. V. Kamboj, Role and effect of persistent organic pollutants to our environment and wildlife, IntechOpen eBooks.

DOI: 10.5772/intechopen.101617

Google Scholar

[6] R. De Salamanca, A. Lopez-Miras, J. Munoz, J. To-Figueras, and C. Conde, Is hexachlorobenzene human overload related to porphyria cutanea tarda? A speculative hypothesis, Medical Hypotheses, 33(1) (1990) 69–71.

DOI: 10.1016/0306-9877(90)90087-u

Google Scholar

[7] T. Vopham, M. M. Brooks, J. Yuan, E. O. Talbott, D. Ruddell, J. E. Hart, C. H. Chang, and J. L. Weissfeld, Pesticide exposure and hepatocellular carcinoma risk: A case-control study using a geographic information system (GIS) to link SEER-Medicare and California pesticide data, Environmental Research, 143 (2015) 68–82.

DOI: 10.1016/j.envres.2015.09.027

Google Scholar

[8] C. Vanden Bilcke, The Stockholm Convention on Persistent Organic Pollutants, Review of European Community and International Environmental Law, 11(3) (2002) 328–342.

DOI: 10.1111/1467-9388.00331

Google Scholar

[9] W. Guo, H. Ren, Y. Jin, Z. Chai, and B. Liu, The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review, Chemosphere, 355 (2024) 141852.

DOI: 10.1016/j.chemosphere.2024.141852

Google Scholar

[10] F. E. Titchou, H. Zazou, H. Afanga, J. E. Gaayda, R. A. Akbour, P. V. Nidheesh, and M. Hamdani, Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes, Chemical Engineering and Processing, 169 (2021) 108631.

DOI: 10.1016/j.cep.2021.108631

Google Scholar

[11] V. Nguyen, S. M. Smith, K. Wantala, and P. Kajitvichyanukul, Photocatalytic remediation of persistent organic pollutants (POPs): A review, Arabian Journal of Chemistry, 13(11) (2020) 8309–8337.

DOI: 10.1016/j.arabjc.2020.04.028

Google Scholar

[12] M. Trojanowicz, Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation, Science of the Total Environment, 718 (2020) 134425.

DOI: 10.1016/j.scitotenv.2019.134425

Google Scholar

[13] F. L. Lepine, F. Brochu, S. Milot, O. A. Mamer, and Y. Pepin, γ-Irradiation-induced degradation of DDT and its metabolites in organic solvents, Journal of Agricultural and Food Chemistry, 42(9) (1994) 2012–2018.

DOI: 10.1021/jf00045a034

Google Scholar

[14] J. González-Juárez, and J. Jiménez-Becerril, Gamma radiation-induced catalytic degradation of 4-chlorophenol using SiO2, TiO2, and Al2O3, Radiation Physics and Chemistry, 75(7) (2006) 768–772.

DOI: 10.1016/j.radphyschem.2005.12.032

Google Scholar

[15] S. Karimov, E. Abdullayev, M. Millet, and M. Gurbanov, Radiolytic degradation of 1,2,4-trichlorobenzene (TCB) in some organic solvents by gamma rays: The kinetic properties of complete dechlorination of TCB and its pathway, Heliyon, 10(10) (2024) e31547.

DOI: 10.1016/j.heliyon.2024.e31547

Google Scholar

[16] U. A. Guliyeva, M. A. Gurbanov, E. T. Abdullayev, and S. E. Kerimov, Radiolysis of chlororganic pesticides in hexane solution, Journal of Radiation Researches, 4(2) (2017) 60–65.

Google Scholar

[17] J. C. Russell, and G. R. Freeman, Reactions of the primary reducing species in the radiolysis of liquid 2-propanol, Journal of Physical Chemistry, 72(3) (1968) 808–815.

DOI: 10.1021/j100849a009

Google Scholar

[18] S. Karimov, E. Abdullayev, M. Gurbanov, and L. Gasimzada, The kinetic properties of gamma-radiolysis of HCB in selected organic solvents, Scientific News, 24(2) (2024) 24–29.

Google Scholar

[19] D. Gattey, Chemical-induced ocular side effects, In Elsevier eBooks (2008) 289–306.

Google Scholar

[20] Safety Data Sheet of Pentachlorobenzene, Agilent. https://www.agilent.com/cs/library/msds/RCP-030_NAEnglish.pdf.

Google Scholar

[21] Safety Data Sheet of 1,2,4-Tetrachlorobenzene, Fischer Scientific. https://www.fishersci.com/store/msds?partNumber=AC157780010&productDescription=1+2+4+5-TETRACHLOROBENZE+1KG&vendorId=VN00032119&countryCode=US&language=en.

Google Scholar

[22] Safety Data Sheet of 1,2,3,5-Tetrachlorobenzene, Agilent. https://www.agilent.com/cs/library/msds/RCP-028_NAEnglish.pdf.

Google Scholar

[23] Safety Data Sheet of 1,2,4-Trichlorobenzene, Honeywell Research Chemicals. https://www.honeywellmsds.com/ehswww/hon/result/result_single.jsp?P_LANGU=E&P_SYS=1&P_SSN=22282&C001=MSDS&C997=C100%3BE%2BC101%3BSDS_GB%2BC102%3BGB%2B3400&C100=*&C101=*&C102=*&C005=&C038=10649831&C008=&C006=HON&C018=TRUE+&C028=TRUE+.

Google Scholar

[24] Safety Data Sheet of 1,3,5-Trichlorobenzene, Agilent. https://www.agilent.com/cs/library/msds/RCP-026_NAEnglish.pdf.

Google Scholar

[25] M. Dutschke, T. Schnabel, F. Schütz, and C. Springer, Degradation of chlorinated volatile organic compounds from contaminated groundwater using a carrier-bound TiO2/UV/O3-system, Journal of Environmental Management, 304 (2022) 114236.

DOI: 10.1016/j.jenvman.2021.114236

Google Scholar

[26] F. Taghipour, and G. J. Evans, Radiolytic dechlorination of chlorinated organics, Radiation Physics and Chemistry, 49(2) (1997) 257–264.

DOI: 10.1016/s0969-806x(96)00065-5

Google Scholar

[27] V. Nguyen, S. M. Smith, K. Wantala, and P. Kajitvichyanukul, Photocatalytic remediation of persistent organic pollutants (POPs): A review, Arabian Journal of Chemistry, 13(11) (2020) 8309–8337.

DOI: 10.1016/j.arabjc.2020.04.028

Google Scholar

[28] H. T. Pham, and C. I. Chihiro, Chlorinated benzenes and benzene degradation in aerobic pyrite suspension, Archives of Environmental Protection.

DOI: 10.24425/aep.2019.126426

Google Scholar

[29] Z. Zhou, X. Liu, K. Sun, C. Lin, J. Ma, M. He, and W. Ouyang, Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review, Chemical Engineering Journal, 372 (2019) 836–851.

DOI: 10.1016/j.cej.2019.04.213

Google Scholar

[30] G. Pérez-Lucas, M. Aliste, N. Vela, I. Garrido, J. Fenoll, and S. Navarro, Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation, Process Safety and Environmental Protection, 137 (2020) 358–365.

DOI: 10.1016/j.psep.2020.02.039

Google Scholar

[31] S. Yamada, Y. Naito, M. Takada, S. Nakai, and M. Hosomi, Photodegradation of hexachlorobenzene and theoretical prediction of its degradation pathways using quantum chemical calculation, Chemosphere, 70(4) (2008) 731–736.

DOI: 10.1016/j.chemosphere.2007.06.039

Google Scholar

[32] C. Li, L. Yang, X. Liu, Y. Yang, L. Qin, D. Li, and G. Liu, Bridging the energy benefit and POPs emission risk from waste incineration, The Innovation, 2(1) (2021) 100075.

DOI: 10.1016/j.xinn.2020.100075

Google Scholar

[33] P. Popov, and N. Getoff, Ozonolysis and combination of ozonolysis and radiolysis of aqueous fluorene, Radiation Physics and Chemistry, 69(4) (2004) 311–315.

DOI: 10.1016/j.radphyschem.2003.08.015

Google Scholar

[34] X. Pan, J. Wei, R. Qu, S. Xu, J. Chen, G. Al-Basher, C. Li, A. Shad, A. A. Dar, and Z. Wang, Alumina-mediated photocatalytic degradation of hexachlorobenzene in aqueous system: Kinetics and mechanism, Chemosphere, 257 (2020) 127256.

DOI: 10.1016/j.chemosphere.2020.127256

Google Scholar

[35] D. Zou, Y. Chi, C. Fu, J. Dong, F. Wang, and M. Ni, Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant, Journal of Hazardous Materials, 248–249 (2013) 177–184.

DOI: 10.1016/j.jhazmat.2013.01.005

Google Scholar

[36] G. Albarrán, and E. Mendoza, Radiolysis-induced degradation of 1,3-dichlorobenzene and 4-chlorophenol in aqueous solution, Radiation Physics and Chemistry, 109318 (2020).

DOI: 10.1016/j.radphyschem.2020.109318

Google Scholar

[37] T. Shimokawa, and T. Sawai, Chain dechlorination of organic chlorinated compounds in alcohol solutions by 60Co γ-rays, (II), Journal of Nuclear Science and Technology, 14(10) (1977) 731–736.

DOI: 10.3327/jnst.14.731

Google Scholar

[38] S. B. Butt, and R. N. Qureshi, Gamma radiolytic degradation of fluoranthene and monitoring of radiolytic products using GC-MS and HPLC, Radiation Physics and Chemistry, 77(6) (2008) 768–774.

DOI: 10.1016/j.radphyschem.2007.11.007

Google Scholar

[39] L. Chu, S. Yu, and J. Wang, Gamma radiolytic degradation of naphthalene in aqueous solution, Radiation Physics and Chemistry, 123 (2016) 97–102.

DOI: 10.1016/j.radphyschem.2016.02.029

Google Scholar

[40] M. Riaz, and S. B. Butt, Gamma radiolytic degradation of the endrin insecticide in methanol and monitoring of radiolytic degradation products by HPLC, Journal of Radioanalytical and Nuclear Chemistry, 285(3) (2010) 697–701.

DOI: 10.1007/s10967-010-0599-0

Google Scholar

[41] S. Yao, D. Dou, H. Fu, S. Liu, S. Wang, and X. Sun, Innovation technique of radiation for the treatment of 4-chlorophenol as a model of POPs in wastewater, Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 236(1–4) (2005) 266–271.

DOI: 10.1016/j.nimb.2005.03.249

Google Scholar

[42] A. M. Dessouki, H. F. Aly, and H. H. Sokker, The use of gamma radiation for removal of pesticides from wastewater, Czechoslovak Journal of Physics, 49(S1) (1999) 521–533.

DOI: 10.1007/s10582-999-0071-y

Google Scholar

[43] A. Khalil, M. Albachir, and A. Odeh, Effect of gamma irradiation on some carcinogenic polycyclic aromatic hydrocarbons (PAHs) in wheat grains, Polycyclic Aromatic Compounds, 36(5) (2016) 873–883.

DOI: 10.1080/10406638.2015.1042551

Google Scholar