Machinability Indices of some Metallic Materials in Abrasive Waterjet Machining

Article Preview

Abstract:

Abrasive Waterjet Machining (AWJM) has significant advantages, such as being environmentally friendly, used for machining hard-to-cut materials, and do not cause a heat-affected zone. More machining tests are needed to understand the concept of material machinability in AWJM to increase process flexibility and produce parts with higher productivity, better accuracy, and surface quality. This paper presents drilling and slotting experiments through different metallic materials at fixed machining conditions to evaluate their machinability using AWJM. It introduces new machinability indices that arrange the tested materials concerning their machinability rating. Drilling indices include volumetric removal rate (VRR), penetration rate (PR), specific removal rate (SRR), and taper angle (TA). The paper correlates VRR, PR, drilling power, and Young’s modulus of the tested materials. In the case of slotting, VRR, kerf taper angle (TA), and the average surface roughness, Ra, were measured and used as indices of machinability. Cost analysis was also performed to introduce an economical index of machinability for both AWJ drilling and slotting AWJM operations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-149

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hongyu Zheng and Kui Liu (2013) Machinability of Engineering Materials. Handbook of Manufacturing Engineering and Technology. Springer-Verlag London

DOI: 10.1007/978-1-4471-4976-7_2-1

Google Scholar

[2] Jay Zeng (2007) Determination of Machinability and Abrasive Cutting Properties in AWJ Cutting. 2007 American WJTA Conference and Expo. Houston, Texas

Google Scholar

[3] Vijay Kumar Pal and Puneet Tandon (2013) Identification of the Role of Machinability and Milling depth on Machining Time in Controlled Depth Milling using Abrasive Water Jet. International J Advanced Manufacturing Technology 66:877–881

DOI: 10.1007/s00170-012-4373-z

Google Scholar

[4] Lisa Dekster, Nikolaos Nikolaos Panagiotis Karmiris-Obratanski and Angelos P. Markopoulos (2023) Evaluation of the Machinability of Ti-6Al-4V Titanium Alloy by AWJM Using a Multipass Strategy. Applied Science, 13, 3774. doi.org/

DOI: 10.3390/app13063774

Google Scholar

[5] A. Perumal, C. Kailasanathan , Vincent Herald Wilson, T. Sampath Kumar, B. Stalin, P.R. Rajkumar (2021). Machinability of Titanium alloy 6242 by AWJM through Taguchi method. Materials Today: Proceedings, Volume 81, Part 2, 2023, Pages 606-611

DOI: 10.1016/j.matpr.2021.04.067

Google Scholar

[6] Mingchao Du, Kun Zhang, Yanli Liu, Long Feng, Chunyong Fan (2022) Experimental and Simulation Study on the Influence Factors of Abrasive Water Jet Machining Ductile Materials. Energy Reports, Volume 8, November 2022, Pages 11840-11857. doi.org/

DOI: 10.1016/j.egyr.2022.09.035

Google Scholar

[7] Ashwin Polishetty and Guy Littlefair (2020) Comparative Study of Machinability of Additive Manufactured and Wrought Titanium Alloy using Abrasive Waterjet Machining. Proceedings of the Canadian Society for Mechanical Engineering International Congress, CSME Congress, Charlottetown, PE, Canada, 5P

DOI: 10.32393/csme.2020.1267

Google Scholar

[8] S.B. Supriya and Satyanarayana Srinivas (2018). Machinability Studies on Stainless Steel by Abrasive Water Jet -Review. Materials Today: Proceedings, 5(1), 2871–2876

DOI: 10.1016/j.matpr.2018.01.079

Google Scholar

[9] Wasif Mukaddam; Arjun Ramchandran; Manivannan Sugavaneswaran (2021) Study of Effect on Machinability by Hybrid Abrasive Materials in AWJM. Materials, Mechanics & amp; Modelling (NCMMM-2020) AIP Conference Proceedings. 2341, 040006

DOI: 10.1063/5.0050218

Google Scholar

[10] M. Adam Khan and Gupta Kapil (2020). Machinability Studies on Abrasive Water Jet Machining of Low Alloy Steel for Different Thickness. IOP Conference Series: Materials Science and Engineering, 709, 044099–

DOI: 10.1088/1757-899x/709/4/044099

Google Scholar

[11] H. Thakkar Kamlesh, M. Prajapati Vipul and A. Thakkar Shreyash (2013) A Machinability Study of Mild Steel using Abrasive Water Jet Machining Technology, International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 3, pp.1063-1063

Google Scholar

[12] V. E. Beal; P. Erasenthiran; N. Hopkinson; P. Dickens, and C. H. Ahrens (2006) Optimisation of Processing Parameters in Laser Fused H13/Cu Materials using Response Surface Method (RSM). Journal of Materials Processing Technology, 174, 145–154.

DOI: 10.1016/j.jmatprotec.2005.04.101

Google Scholar

[13] M. Uthayakumar, M. Adam Khan, S. Thirumalai Kumaran, Adam Slota & Jerzy Zajac (2015). Machinability of Nickel-Based Superalloy by Abrasive Water Jet Machining. Materials and Manufacturing Processes, 10426914.2015.1103859–.

DOI: 10.1080/10426914.2015.1103859

Google Scholar

[14] C. Joel and Thangasamy Jeyapoovan (2021) Optimization of Machinability Parameters in Abrasive Water Jet Machining of AA7075 using Grey-Taguchi method. Materials Today Proceedings, Volume 37, Part 2, 2021, Pages 737-741

DOI: 10.1016/j.matpr.2020.05.741

Google Scholar

[15] R. Shibin, V. Anandakrishnan, S. Sathish, Vinod Mallemala Sujana (2019). Investigation on the Abrasive Water Jet Machinability of AA2014 using SiC as Abrasive. Materialstoday: Proceedings, (), S2214785319320322–

DOI: 10.1016/j.matpr.2019.06.659

Google Scholar

[16] Salem A Basher Ibrahim; Korkmaz Seyma; Muhammet Hüseyin Çetin; Fuat Kartal (2020). Performance Evaluation of the Submerged Abrasive Water Jet Turning Process for Improving Machinability of Castamide. Engineering Science and Technology, an International Journal, Volume 23, Issue 4, Pages 801-811

DOI: 10.1016/j.jestch.2020.06.009

Google Scholar

[17] S. Muralidharan; I. Aatthisugan; A. Tripathi; H. Baradiya; A. Singh (2018). A Study on Machinability of Polymer Composite by Abrasive Water Jet Machining. IOP Conference Series: Materials Science and Engineering, 402(), 012102–

DOI: 10.1088/1757-899X/402/1/012102

Google Scholar

[18] Mohamed El-Hofy; Mohamed Osama Helmy; Gustavo A Escobar-Palafox; Kevin Kerrigan; R. Scaife; and Hassan A El-Hofy (2018) Abrasive Water Jet Machining of Multidirectional CFRP Laminates. Procedia CIRP, 68, 535–540

DOI: 10.1016/j.procir.2017.12.109

Google Scholar

[19] HA Youssef, HA El-Hofy, AM Abdelaziz, and MH El-Hofy (2020) Accuracy and Surface Quality of Abrasive Waterjet Machined CFRP Composites. Journal of Composite Materials, Vol. 55, Issue 12, Pages 1693-1703. doi.org/

DOI: 10.1177/0021998320974428

Google Scholar

[20] N. R. Prabhuswamy, Satyanarayana Srinivas, Aref Vasli, M. V. Sheshashayan, S. Venkatesh, Yash Roongta (2018). Machinability studies of aluminium 6061 cut by abrasive water jet. Materials Today: Proceedings, 5(1), 2865-2870.‏

DOI: 10.1016/j.matpr.2018.01.078

Google Scholar

[21] Panagiotis Karmiris-Obratański; Nikolaos E Karkalos; Rafał Kudelski; Emmanouil L Papazoglou; Angelos P Markopoulos (2021). On the Effect of Multiple Passes on Kerf Characteristics and Efficiency of Abrasive Waterjet Cutting. Metals.  11(1), 74

DOI: 10.3390/met11010074

Google Scholar

[22] Srecko Ćurčic, Jelina Baralić, , Sandra Milunovic, Milan Pavlovic, Slavko Arsoviski, and Ljubinka Radosavljevic (2011) Techno-economic Analysis of Abrasive Water-Jet Machining and Wire Electrical-Discharge Machining. Strojarstvo, 53 (4) 249-258. ISSN 0562-1887.

Google Scholar