Bending and Shear Response of Perturbated Honeycomb Lattices

Article Preview

Abstract:

This study examines the potential to customize the bending and transverse shear behavior of aluminum honeycomb sandwich panels by introducing sinusoidal perturbations to their cell walls. Finite element analysis is used to investigate the effect of varying the amplitude and frequency of the introduced perturbations on the flexural and transverse shear stiffness and strength of perturbed aluminum cores. Results show that increasing the amplitude and frequency of the perturbations generally decreases the flexural and transverse shear stiffness and yield strength. Local deformations in the perturbed cores indicate that imposing perturbations encouraged the development of localized deformations in the curved cell walls, which increased the perturbed cores' compliance. The transverse shear and flexural responses at the highest frequencies and amplitudes exhibited a very smooth and compliant behavior compared to the unperturbed cores. The response of the perturbed cores can be attractive for applications involving impact energy mitigation, as they demonstrate an enhanced capacity to reduce and limit the force transmitted through them.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-72

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.V. Ramnath, K. Alagarraja, C. Elanchezhian, Review on sandwich composite and their applications, Mater Today Proc 16 (2019) 859–864.

DOI: 10.1016/j.matpr.2019.05.169

Google Scholar

[2] O. Al Osman, M. Alkhader, W. Abuzaid, Dynamic compressive response of coated open-cell aluminum foam, (2022) 1–4.

DOI: 10.1109/ASET53988.2022.9734946

Google Scholar

[3] F. Xia, Y. Durandet, P.J. Tan, D. Ruan, Three-point bending performance of sandwich panels with various types of cores, Thin-Walled Structures 179 (2022) 109723. https://doi.org/.

DOI: 10.1016/j.tws.2022.109723

Google Scholar

[4] M.M. Sychov, L.A. Lebedev, S. V Dyachenko, L.A. Nefedova, Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology, Acta Astronaut 150 (2018) 81–84.

DOI: 10.1016/j.actaastro.2017.12.034

Google Scholar

[5] F. Cote, V.S. Deshpande, N.A. Fleck, A.G. Evans, The out-of-plane compressive behavior of metallic honeycombs, Materials Science and Engineering: A 380 (2004) 272–280.

DOI: 10.1016/j.msea.2004.03.051

Google Scholar

[6] L.L. Yan, B. Yu, B. Han, C.Q. Chen, Q.C. Zhang, T.J. Lu, Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores, Compos Sci Technol 86 (2013) 142–148.

DOI: 10.1016/j.compscitech.2013.07.011

Google Scholar

[7] D.J. Sypeck, Cellular truss core sandwich structures, Applied Composite Materials 12 (2005) 229–246.

DOI: 10.1007/s10443-005-1129-z

Google Scholar

[8] Y. Chen, R. Das, A review on manufacture of polymeric foam cores for sandwich structures of complex shape in automotive applications, Journal of Sandwich Structures & Materials 24 (2022) 789–819.

DOI: 10.1177/10996362211030564

Google Scholar

[9] U. Farooq, M.S. Ahmad, S.A. Rakha, N. Ali, A.A. Khurram, T. Subhani, Interfacial mechanical performance of composite honeycomb sandwich panels for aerospace applications, Arab J Sci Eng 42 (2017) 1775–1782.

DOI: 10.1007/s13369-016-2307-z

Google Scholar

[10] T. Bitzer, Honeycomb marine applications, Journal of Reinforced Plastics and Composites 13 (1994) 355–360.

DOI: 10.1177/073168449401300406

Google Scholar

[11] R. Attarzadeh, S.-H. Attarzadeh-Niaki, C. Duwig, Multi-objective optimization of TPMS-based heat exchangers for low-temperature waste heat recovery, Appl Therm Eng 212 (2022) 118448.

DOI: 10.1016/j.applthermaleng.2022.118448

Google Scholar

[12] A.P.G. Castro, R.B. Ruben, S.B. Gonçalves, J. Pinheiro, J.M. Guedes, P.R. Fernandes, Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering, Comput Methods Biomech Biomed Engin 22 (2019) 567–573.

DOI: 10.1080/10255842.2019.1569638

Google Scholar

[13] S. Yu, J. Sun, J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater Des 182 (2019) 108021.

DOI: 10.1016/j.matdes.2019.108021

Google Scholar

[14] W. Tang, H. Zhou, Y. Zeng, M. Yan, C. Jiang, P. Yang, Q. Li, Z. Li, J. Fu, Y. Huang, Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp, Int J Heat Mass Transf 201 (2023) 123642.

DOI: 10.1016/j.ijheatmasstransfer.2022.123642

Google Scholar

[15] D. Weber, S. Srinivas Sundarram, 3D‐printed and foamed triply periodic minimal surface lattice structures for energy absorption applications, Polym Eng Sci 63 (2023) 1133–1145.

DOI: 10.1002/pen.26270

Google Scholar

[16] Y. Zhong, Z. Shi, Q. Luo, M. Zhang, A simplified semi-analytical model for predicting the global and local responses of hybrid honeycomb-like sandwich panel, Thin-Walled Structures 182 (2023) 110307.

DOI: 10.1016/j.tws.2022.110307

Google Scholar

[17] A. Vaziri, Z. Xue, J.W. Hutchinson, Metal sandwich plates with polymer foam-filled cores, J Mech Mater Struct 1 (2006) 97–127.

DOI: 10.2140/jomms.2006.1.97

Google Scholar

[18] Y. Sun, R. Burgueño, A.J. Vanderklok, S.A. Tekalur, W. Wang, I. Lee, Compressive behavior of aluminum/copper hybrid foams under high strain rate loading, Materials Science and Engineering: A 592 (2014) 111–120.

DOI: 10.1016/j.msea.2013.10.104

Google Scholar

[19] M. Sadighi, S.A. Hosseini, Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels, Compos B Eng 55 (2013) 158–166.

DOI: 10.1016/j.compositesb.2013.06.030

Google Scholar

[20] T. George, V.S. Deshpande, K. Sharp, H.N.G. Wadley, Hybrid core carbon fiber composite sandwich panels: Fabrication and mechanical response, Compos Struct 108 (2014) 696–710.

DOI: 10.1016/j.compstruct.2013.10.002

Google Scholar

[21] M. Alkhader, M. Vural, An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations, J Mech Phys Solids 57 (2009) 871–890.

DOI: 10.1016/j.jmps.2008.12.005

Google Scholar

[22] N.A. Fleck, X. Qiu, The damage tolerance of elastic–brittle, two-dimensional isotropic lattices, J Mech Phys Solids 55 (2007) 562–588.

DOI: 10.1016/j.jmps.2006.08.004

Google Scholar

[23] T.G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Materials Science and Engineering: A 283 (2000) 105–110.

DOI: 10.1016/s0921-5093(00)00623-7

Google Scholar

[24] C. Chen, T.J. Lu, N.A. Fleck, Effect of imperfections on the yielding of two-dimensional foams, J Mech Phys Solids 47 (1999) 2235–2272.

DOI: 10.1016/s0022-5096(99)00030-7

Google Scholar

[25] H. Jiang, Y. Ji, Y. Hu, X. Hu, Y. Ren, Interfacial design and flexural property of CFRP/aluminum-honeycomb sandwich with Aramid-pulp micro/nano-fiber interlays, Compos Struct 289 (2022) 115486.

DOI: 10.1016/j.compstruct.2022.115486

Google Scholar

[26] L. Wahl, S. Maas, D. Waldmann, P. Frères, : Eurocomposites, Shear Stresses in Honeycombs Shear Stresses in Honeycomb Sandwich Plates: Analytical Solution, FEM and Experimental Verification, (2011).

DOI: 10.1177/1099636212444655

Google Scholar

[27] T. Allen, N. Martinello, D. Zampieri, T. Hewage, T. Senior, L. Foster, A. Alderson, Auxetic foams for sport safety applications, Procedia Eng 112 (2015) 104–109.

DOI: 10.1016/j.proeng.2015.07.183

Google Scholar

[28] A.-J. Wang, D.L. McDowell, In-plane stiffness and yield strength of periodic metal honeycombs, J. Eng. Mater. Technol. 126 (2004) 137–156.

DOI: 10.1115/1.1646165

Google Scholar

[29] G. Palomba, T. Hone, D. Taylor, V. Crupi, Bio-inspired protective structures for marine applications, Bioinspir Biomim 15 (2020) 056016.

DOI: 10.1088/1748-3190/aba1d1

Google Scholar

[30] L.L. Hu, T.X. Yu, Dynamic crushing strength of hexagonal honeycombs, Int J Impact Eng 37 (2010) 467–474.

DOI: 10.1016/j.ijimpeng.2009.12.001

Google Scholar

[31] O. Al-Osman, M. Alkhader, W. Abuzaid, Enhancing the multifunctionality of open-cell foams through tailoring their thermal and mechanical properties using coatings, European Journal of Mechanics-A/Solids 99 (2023) 104923.

DOI: 10.1016/j.euromechsol.2023.104923

Google Scholar