[1]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical assessment of hydrogen explosion consequences in a mine tunnel, Int. J. Hydrog. Energy. 46 (2021) 12361–12371.
DOI: 10.1016/j.ijhydene.2020.09.067
Google Scholar
[2]
Y. Skob, M. Ugryumov, Y. Dreval. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum. 1006 (2020) 117–122.
DOI: 10.4028/www.scientific.net/msf.1006.117
Google Scholar
[3]
Definition of categories of premises, buildings and outdoor installations by explosion and fire hazard: DSTU B V.1.1-36:2016 [Valid from 2017.01.01]. Kyiv: MinRegion of Ukraine, 2016. 31 p.
Google Scholar
[4]
Yurii Skob, Yuriy Dreval, Alexey Vasilchenko, Roman Maiboroda. Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials. 952 (2023) 121-129.
DOI: 10.4028/p-st1vet
Google Scholar
[5]
Andrii Kovalov, Yurii Otrosh, Oleksandr Chernenko, Maxim Zhuravskij, Marcin Anszczak. Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode, In Materials Science Forum, 1038 (2021) pp.514-523.
DOI: 10.4028/www.scientific.net/msf.1038.514
Google Scholar
[6]
Kovalov, A., Otrosh, Y., Kovalevska, T., & Safronov, S. Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings, In Materials Science and Engineering. IOP Publishing, 708 (1) (2019) p.012058.
DOI: 10.1088/1757-899x/708/1/012058
Google Scholar
[7]
Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., & Suprun, O. (2022). Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (119), 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[8]
K. Korytchehko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Probl. At. Sci. Technol. 116 (2018) 194–199.
Google Scholar
[9]
Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., & Venzhego, G. Methodology for Calculating the Technical State of a Reinforced-Concrete Fragment in a Building Influenced by High Temperature. Materials Science Forum, 1006 (2020) 166–172.
DOI: 10.4028/www.scientific.net/msf.1006.166
Google Scholar
[10]
Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198 (2019) 109542.
DOI: 10.1016/j.engstruct.2019.109542
Google Scholar
[11]
I. Medved, M. Surianinov, Y. Otrosh, O. Pirohov, Optimization of the calculated scheme. IOP Conf. Series: Material Science and Engineering. 1164 (2021) 012051.
DOI: 10.1088/1757-899x/1164/1/012051
Google Scholar
[12]
Chiaia. B., Cadoni. Е. (2017). Progressive collapse induced by fire and blast. (Doctoral Dissertation). Politecnico di Torino.
Google Scholar
[13]
Alasiri, M. R. (2023). Behavior And Design of Floor to Speedcore Wall Connections Under Fire Loading. (Thesis). Purdue University.
Google Scholar
[14]
O.Z. Dveirin, O.V. Andreev, A.V. Kondrat'ev, V.Ye. Haidachuk, Stressed State in the Vicinity of a Hole in Mechanical joint of Composite Parts, International Applied Mechanics. 57, 2 (2021) 234–247.
DOI: 10.1007/s10778-021-01076-4
Google Scholar
[15]
Ruthes H. C. Análise do comportamento de sistemas estruturais em concreto moldado in loco sob o efeito do colapso progressivo.
Google Scholar
[16]
Melo C. D. (2015). Estudo do colapso progressivo de pórticos planos de concreto armado via análise não linear. (Masters Thesis). Brazil.
DOI: 10.11606/t.18.2018.tde-10042018-115053
Google Scholar
[17]
Padre. E. P. G. (2017). Desenvolvimento de um algoritmo computacional para verificação de seções de concreto armado submetidas à flexão composta oblíqua em situação de incêndio. (Masters Thesis). Universidade Federal de Viçosa.
DOI: 10.11606/d.3.2011.tde-17082011-154210
Google Scholar
[18]
Fang, C. (2012). Robustness of multi-storey steel-composite structures under localised fire. (Doctoral Dissertation). Imperial College London.
Google Scholar
[19]
Hu, Y. (2010). Robustness of flexible endplate connections under fire conditions. (Doctoral Dissertation). University of Sheffield.
Google Scholar
[20]
Chen, L. (2013). Robustness in fire of steel framed structures with realistic connections. (Doctoral Dissertation). University of Manchester.
Google Scholar
[21]
S Guzii, Y Otrosh, O Guzii, A Kovalov, K Sotiriadis. Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire, In Materials Science Forum, 1038 (2021) pp.524-530.
DOI: 10.4028/www.scientific.net/msf.1038.524
Google Scholar
[22]
Vlassis, A. G. (2007). Progressive collapse assessment of tall buildings. (Doctoral Dissertation). Imperial College London.
Google Scholar
[23]
Suwondo, R. A. (2019). Behaviour of earthquake damaged composite steel frame structures in fire. (Doctoral Dissertation). University of Manchester.
Google Scholar
[24]
Chen, L. (2013). Robustness in fire of steel framed structures with realistic connections. (Doctoral Dissertation). University of Manchester.
Google Scholar
[25]
U. Starossek, Progressive collapse of structures, ICE Publishing, 2017.
Google Scholar
[26]
Kovalov A., Otrosh Y., Rybka E., Kovalevska T., Togobytska V. and Rolin I. Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. In Materials Science Forum. 1006 (2020) pp.179-184.
DOI: 10.4028/www.scientific.net/msf.1006.179
Google Scholar
[27]
Parisi F., Adam J., Sagaseta J., Lu X. Review of experimental research on progressive collapse of RC structures // IF CRASC. 17 (2017) 265-376.
Google Scholar
[28]
Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y., & Nethercot, D.A. (2007). Assessment of progressive collapse in multi-storey buildings.
DOI: 10.1016/j.engstruct.2009.02.009
Google Scholar
[29]
Yao, Y., Zhang, H., Zhu, Y. F., & Liu, Y. Progressive collapse resistance of reinforced concrete beam-column connection under fire conditions //Structures. 47 (2023) 1265-1283.
DOI: 10.1016/j.istruc.2022.11.147
Google Scholar
[30]
Lu X., Li Y., Guan H., Ying M. (2017). Progressive collapse analysis of a typical super-tall reinforced concrete frame-core tube building exposed to extreme fires. Fire technology, 53, 107-133.
DOI: 10.1007/s10694-016-0566-6
Google Scholar
[31]
Sun, R., Burgess, I. W., Huang, Z., & Dong, G. (2015). Progressive failure modelling and ductility demand of steel beam-to-column connections in fire. Engineering structures, 89, 66-78.
DOI: 10.1016/j.engstruct.2015.01.053
Google Scholar
[32]
Li Y, Lu XZ, Guan H, Ying MJ, Yan WM (2015) A case study on a fire-induced collapse accident of a reinforced concrete frame-supported masonry structure. Fire Tech.
DOI: 10.1007/s10694-015-0491-0
Google Scholar
[33]
I. Medved, Y. Otrosh, A. Kovalov, Y. Mykhailovska, Search for solutions in the problems of calculation of building structures. AIP Conference Proceedings. 2840(1) (2023) 040003.
DOI: 10.1063/5.0168054
Google Scholar
[34]
Dobryak D.O., Nezhnik V.V., Nikulin O.F., Kravchenko N.V., Krikun A.N. Determination of the required area of easily dismountable structures. Scientific Bulletin: Civil Protection and Fire Safety, 2 (14) (2022) 80-86.
Google Scholar
[35]
Whitehead, R. Evolution of Modeling for Lightweight Structures: Creating the Munich Olympic Stadium Roof: Journal of Technology-Architecture + Design, 6 (2) (2022) 212-231.
DOI: 10.1080/24751448.2022.2116242
Google Scholar