Development of an Electrochemical Biosensor Using Magnetite Nanoparticles

Article Preview

Abstract:

An electrochemical sensor was enhanced with magnetite nanoparticles for biosensor application. Nanoparticles of magnetite (Fe3O4) ranging in size from 5 to 30 nm were produced by the co-precipitation method and further modified with an amine functional group (Fe3O4@SiO2_NH2). During the process, the functional amine served as a supporting biomaterial and coating agent, regulating particle size and aggregation. The Fe3O4@SiO2_NH2 nanoparticles were incorporated into gold nanoparticle planes on a conductive graphene electrode in a diluted solution of the ultrafast redox probe K3[Fe(CN)6]. Using scanning electron microscopy to investigate the morphology of the modified graphene sheets and gold (Au) nanoparticles on screen printed electrodes (SCPE). The results clearly demonstrated the even distribution of Fe3O4 nanoparticles, almost always less than 30 nm in size, on AuNPs and graphene sheets. Adding these magnetite particles has created active sites, facilitating the movement of electrons from redox-active species in the solution. In addition, the electrochemical reduction of flawed graphene sheets has greatly limited the oxygen groups, making the material more conductive or enhancing signal. The sensor was subsequently investigated with the use of magnetite nanocomposites for electrochemical biosensing applications with (bovine serum albumin) BSA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-102

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications - an overview, Front. Bioeng. Biotechnol. Vol.4, (2016) p.1–9

DOI: 10.3389/fbioe.2016.00011

Google Scholar

[2] M.L. Sin, K.E. Mach, P.K. Wong, J.C. Liao, Advances and challenges in biosensorbased diagnosis of infectious diseases, Expert Rev. Mol. Diagn. Vol. 14, (2014) p.225–244

Google Scholar

[3] N.F.D. Silva, J.M.C.S. Magalhaes, C. Freire, C. Delerue-Matos, Electrochemical biosensors for Salmonella: state of the art and challenges in food safety assessment, Biosens. Bioelectron, vol. 99, (2018) p.667–682

DOI: 10.1016/j.bios.2017.08.019

Google Scholar

[4] D. Antuna-Jimenez, M.B. Gonzalez-García, D. Hernandez-Santos, P. Fanjul-Bolado, Screen-printed electrodes modified with metal nanoparticles for small molecule sensing, Biosensors, vol. 10, (2020) pp.1-22

DOI: 10.3390/bios10020009

Google Scholar

[5] G. Hughes, K. Westmacott, K.C. Honeychurch, A. Crew, R.M. Pemberton, J.P. Hart, Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses, Biosensors, vol. 6(50), (2016) pp.1-39

DOI: 10.3390/bios6040050

Google Scholar

[6] M. Li, Y.T. Li, D.W. Li, Y.T. Long, Recent developments and applications of screenprinted electrodes in environmental assays-A review, Anal. Chim. Acta, vol.734, (2012) p.31–44.

DOI: 10.1016/j.aca.2012.05.018

Google Scholar

[7] V. Polan, J. Soukup, K. Vytras, Screen-printed carbon electrodes modified by rhodium dioxide and glucose dehydrogenase, Enzym. Res. Vol.2010, (2010) pp.1-7

DOI: 10.4061/2010/324184

Google Scholar

[8] A. Muhammad, R. Hajian, N.A. Yusof, N. Shams, J. Abdullah, P.M. Woi, H. Garmestani, A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk, RSC Adv., vol.8, (2018) pp.2714-2722.

DOI: 10.1039/c7ra07544h

Google Scholar

[9] J.K. Jadav, V.V. Umrania, K.J. Rathod, B.A. Golakiya, Development of silver/ carbon screen-printed electrode for rapid determination of vitamin C from fruit juices, LWT - Food Sci. Technol.(Lebensmittel-Wissenschaft -Technol.), vol. 88, (2018) p.152–158

DOI: 10.1016/j.lwt.2017.10.005

Google Scholar

[10] S.Z. Mohammadi, H. Beitollahi, S. Tajik, Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine, Micro Nano Syst. Lett., Vol.6, (2018) pp.1-7

DOI: 10.1186/s40486-018-0070-5

Google Scholar

[11] K.F. Chan, H.N. Lim, N. Shams, S. Jayabal, A. Pandikumar, N.M. Huang, Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen, Mater. Sci. Eng. C, vol. 58, (2016) p.666–674.

DOI: 10.1016/j.msec.2015.09.010

Google Scholar

[12] A.C. Ward, A.J. Hannah, S.L. Kendrick, N.P. Tucker, G. MacGregor, P. Connolly, Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy, Biosens. Bioelectron., vol. 110, (2018) p.65–70

DOI: 10.1016/j.bios.2018.03.048

Google Scholar

[13] T.T.N. Do, T. Van Phi, T.P. Nguy, P. Wagner, K. Eersels, M.C. Vestergaard, L.T. N. Truong, Anisotropic in situ-coated AuNPs on screen-printed carbon surface for enhanced prostate-specific antigen impedimetric aptasensor, J. Electron. Mater., vol. 46, (2017) p.3542–3552

DOI: 10.1007/s11664-016-5187-9

Google Scholar

[14] B. Yang, D. Bin, J. Wang, S. Li, P. Yang, C. Wang, Y. Shiraishi, Y. Du, Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite, J. Colloid Interface Sci. vol.488, (2017) p.135–141

DOI: 10.1016/j.jcis.2016.10.088

Google Scholar

[15] Y. Zhang, X. Li, D. Li, Q. Wei, A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection, Colloids Surf. B Biointerfaces, vol. 186, (2020) p.110683.

DOI: 10.1016/j.colsurfb.2019.110683

Google Scholar

[16] Y. Li, S. Xu, H.J. Schluesener, Gold nanoparticle based biosensors, Gold Bull., vol. 43, (2010) p.29–41

DOI: 10.1007/bf03214964

Google Scholar

[17] D. Zhao, Y. Liu, Q. Zhang, Y. Zhang, W. Zhang, Q. Duan, Z. Yuan, R. Zhang, S. Sang, Surface stress-based biosensor with stable conductive AuNPs network for biomolecules detection, Appl. Surf. Sci., vol.491, (2019) p.443–450

DOI: 10.1016/j.apsusc.2019.06.178

Google Scholar

[18] X. Cao, Y. Ye, S. Liu, Gold nanoparticle-based signal amplification for biosensing, Anal. Biochem. vol.417, (2011) p.1–16

DOI: 10.1016/j.ab.2011.05.027

Google Scholar

[19] J.M. Pingarron, P. Yanez-Sede no, A. Gonzalez-Cortes, Gold nanoparticle-based electrochemical biosensors, Electrochim. Acta, vol. 53, (2008) p.5848–5866

Google Scholar

[20] Hozhabr Araghi S, Entezari MH, Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution, Appl Surf Sci, vol.333, (2015) p.68–77

DOI: 10.1016/j.apsusc.2015.01.211

Google Scholar

[21] Apetrei, I.M.; Apetrei, C., The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J. Food Eng., vol.149, (2015) p.1–8

DOI: 10.1016/j.jfoodeng.2014.09.036

Google Scholar

[22] Ghasemzadeh MA, Abdollahi-Basir MH, Babaei M, Fe3O4@SiO2–NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media, Green Chem Lett Rev, vol.8, (2015) p.40–49

DOI: 10.1080/17518253.2015.1107139

Google Scholar

[23] Ji, D.; Liu, L.; Li, S.; Chen, C.; Lu, Y.; Wu, J.; Liu, Q. Smartphone-Based Cyclic Voltammetry System with Graphene Modified Screen Printed Electrodes for Glucose Detection, Biosens. Bioelectron., vol.98, (2017) p.449–456

DOI: 10.1016/j.bios.2017.07.027

Google Scholar